python类color_palette()的实例源码

recipe_clustering.py 文件源码 项目:Flavor-Network 作者: lingcheng99 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def tsne_cluster_cuisine(df,sublist):
    lenlist=[0]
    df_sub = df[df['cuisine']==sublist[0]]
    lenlist.append(df_sub.shape[0])
    for cuisine in sublist[1:]:
        temp = df[df['cuisine']==cuisine]
        df_sub = pd.concat([df_sub, temp],axis=0,ignore_index=True)
        lenlist.append(df_sub.shape[0])
    df_X = df_sub.drop(['cuisine','recipeName'],axis=1)
    print df_X.shape, lenlist

    dist = squareform(pdist(df_X, metric='cosine'))
    tsne = TSNE(metric='precomputed').fit_transform(dist)

    palette = sns.color_palette("hls", len(sublist))
    plt.figure(figsize=(10,10))
    for i,cuisine in enumerate(sublist):
        plt.scatter(tsne[lenlist[i]:lenlist[i+1],0],\
        tsne[lenlist[i]:lenlist[i+1],1],c=palette[i],label=sublist[i])
    plt.legend()

#interactive plot with boken; set up for four categories, with color palette; pass in df for either ingredient or flavor
plotter.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def saturation_index_countour(lab, elem1, elem2, Ks, labels=False):
    plt.figure()
    plt.title('Saturation index %s%s' % (elem1, elem2))
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    plt.xlabel('Time')
    z = np.log10((lab.species[elem1]['concentration'][:, ::n] + 1e-8) * (
        lab.species[elem2]['concentration'][:, ::n] + 1e-8) / lab.constants[Ks])
    lim = np.max(abs(z))
    lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[::n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette(
        "RdBu_r", 101)), origin='lower', levels=lim, extend='both')
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    # cbar = plt.colorbar(CS)
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Saturation index %s%s' % (elem1, elem2))
    return ax
plotter.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def contour_plot_of_rates(lab, r, labels=False, last_year=False):
    plt.figure()
    plt.title('{}'.format(r))
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    if last_year:
        k = n - int(1 / lab.dt)
    else:
        k = 1
    z = lab.estimated_rates[r][:, k - 1:-1:n]
    # lim = np.max(np.abs(z))
    # lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[k::n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(
        sns.color_palette("Blues", 51)))
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Rate %s [M/V/T]' % r)
    return ax
plotter.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def contour_plot_of_delta(lab, element, labels=False, last_year=False):
    plt.figure()
    plt.title('Rate of %s consumption/production' % element)
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    if last_year:
        k = n - int(1 / lab.dt)
    else:
        k = 1
    z = lab.species[element]['rates'][:, k - 1:-1:n]
    lim = np.max(np.abs(z))
    lim = np.linspace(-lim - 0.1, +lim + 0.1, 51)
    X, Y = np.meshgrid(lab.time[k:-1:n], -lab.x)
    plt.xlabel('Time')
    CS = plt.contourf(X, Y, z, 20, cmap=ListedColormap(sns.color_palette(
        "RdBu_r", 101)), origin='lower', levels=lim, extend='both')
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('Rate of %s change $[\Delta/T]$' % element)
    return ax
densityplot.py 文件源码 项目:coquery 作者: gkunter 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_defaults(self):
        self.options["color_palette"] = "Paired"
        if self._levels:
            self.options["color_number"] = len(self._levels[-1])
        else:
            self.options["color_number"] = 1

        if len(self._number_columns) == 0:
            raise VisualizationInvalidDataError

        if len(self._number_columns) == 1:
            if self.cumulative:
                self.options["label_y_axis"] = "Cumulative probability"
            else:
                self.options["label_y_axis"] = "Density"
        else:
            self.options["label_y_axis"] = self._number_columns[-2]
        self.options["label_x_axis"] = self._number_columns[-1]

        if len(self._groupby) == 1:
            self.options["label_legend"] = self._groupby[-1]

        super(Visualizer, self).set_defaults()
scatterplot.py 文件源码 项目:coquery 作者: gkunter 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def set_defaults(self):
        self.options["color_palette"] = "Paired"
        if self._levels:
            self.options["color_number"] = len(self._levels[-1])
        else:
            self.options["color_number"] = 1

        if len(self._number_columns) == 0:
            raise VisualizationInvalidDataError

        if len(self._number_columns) == 1:
            self.options["label_x_axis"] = self._default
        else:
            self.options["label_x_axis"] = self._number_columns[-2]
        self.options["label_y_axis"] = self._number_columns[-1]

        if len(self._groupby) == 1:
            self.options["label_legend"] = self._groupby[-1]

        super(Visualizer, self).set_defaults()
figureoptions.py 文件源码 项目:coquery 作者: gkunter 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def accept(self):
        self.options["label_main"] = str(self.ui.label_main.text())
        self.options["label_x_axis"] = str(self.ui.label_x_axis.text())
        self.options["label_y_axis"] = str(self.ui.label_y_axis.text())
        self.options["label_legend"] = str(self.ui.label_legend.text())
        self.options["label_legend_columns"] = int(self.ui.spin_columns.value())

        try:
            self.options["color_transparency"] = float(self.ui.slide_transparency.value())
        except AttributeError:
            pass

        self.options["color_palette"] = self.palette_name
        self.options["color_palette_values"] = self.get_current_palette()
        if len(self.options["color_palette_values"]) < self.options.get("color_number", 6):
            self.options["color_palette_values"] = (self.options["color_palette_values"] * self.options.get("color_number", 6))[:self.options.get("color_number", 6)]

        for x in ["main", "x_axis", "x_ticks", "y_axis", "y_ticks", "legend", "legend_entries"]:
            self.options["font_{}".format(x)] = getattr(self.ui, "label_sample_{}".format(x)).font()

        super(FigureOptions, self).accept()
        options.settings.setValue("figureoptions_size", self.size())
deprecated_flu_prediction.py 文件源码 项目:augur 作者: nextstrain 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_all(self):
        from matplotlib import pyplot as plt
        import seaborn as sns
        cols = sns.color_palette(n_colors=6)
        p = self.global_pivots
        fig = plt.figure(figsize = (20,7))
        ax = plt.subplot(111)
        for clade in  self.global_freqs.keys():
            f = self.global_freqs[clade]
            if np.max(f)>0.2:
                ax.plot(p, f, c=cols[clade%len(cols)], alpha=0.3, ls='--')

        for tint, (p,freq) in self.train_frequencies.iteritems():
            for clade in  freq.keys():
                if np.max(freq[clade])>0.2:
                    ax.plot(p, freq[clade], c=cols[clade%len(cols)], alpha=0.5)
analytics.py 文件源码 项目:openai_lab 作者: kengz 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def scoped_mpl_import():
    import matplotlib
    matplotlib.rcParams['backend'] = MPL_BACKEND

    import matplotlib.pyplot as plt
    plt.rcParams['toolbar'] = 'None'  # mute matplotlib toolbar

    import seaborn as sns
    sns.set(style="whitegrid", color_codes=True, font_scale=1.0,
            rc={'lines.linewidth': 1.0,
                'backend': matplotlib.rcParams['backend']})
    palette = sns.color_palette("Blues_d")
    palette.reverse()
    sns.set_palette(palette)

    return (matplotlib, plt, sns)
helpers.py 文件源码 项目:hypertools 作者: ContextLab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def vals2colors(vals,cmap='GnBu_d',res=100):
    """Maps values to colors
    Args:
    values (list or list of lists) - list of values to map to colors
    cmap (str) - color map (default is 'husl')
    res (int) - resolution of the color map (default: 100)
    Returns:
    list of rgb tuples
    """
    # flatten if list of lists
    if any(isinstance(el, list) for el in vals):
        vals = list(itertools.chain(*vals))

    # get palette from seaborn
    palette = np.array(sns.color_palette(cmap, res))
    ranks = np.digitize(vals, np.linspace(np.min(vals), np.max(vals)+1, res+1)) - 1
    return [tuple(i) for i in palette[ranks, :]]
occlusion.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_heatmaps(img_arr, img_names, titles, heatmaps, labels, out_dir):

    # construct cmap
    pal = sns.diverging_palette(240, 10, n=30, center="dark")
    my_cmap = ListedColormap(sns.color_palette(pal).as_hex())

    min_val, max_val = np.min(heatmaps), np.max(heatmaps)

    for j, (img, img_name, h_map, title, y) in enumerate(zip(img_arr, img_names, heatmaps, titles, labels)):

        fig, ax = plt.subplots()
        img = np.transpose(img, (1, 2, 0))
        plt.clf()
        plt.imshow(img, cmap='Greys', interpolation='bicubic')
        plt.imshow(h_map, cmap=my_cmap, alpha=0.7, interpolation='nearest') #, vmin=-.05, vmax=.05)
        plt.colorbar()
        plt.axis('off')
        plt.title(title)
        class_name = CLASSES[y]
        class_dir = make_sub_dir(out_dir, class_name)
        plt.savefig(join(class_dir, img_name), bbox_inches='tight', dpi=300)
kmeans.py 文件源码 项目:MLAlgorithms 作者: rushter 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot(self, ax=None, holdon=False):
        sns.set(style="white")

        data = self.X

        if ax is None:
            _, ax = plt.subplots()



        for i, index in enumerate(self.clusters):
            point = np.array(data[index]).T
            ax.scatter(*point, c=sns.color_palette("hls", self.K + 1)[i])

        for point in self.centroids:
            ax.scatter(*point, marker='x', linewidths=10)

        if not holdon:
            plt.show()
plot.py 文件源码 项目:unrolled-gan 作者: musyoku 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_kde(data, dir=None, filename="kde", color="Greens"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    bg_color  = sns.color_palette(color, n_colors=256)[0]
    ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
    ax.set_axis_bgcolor(bg_color)
    kde = ax.get_figure()
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    kde.savefig("{}/{}.png".format(dir, filename))
plot_true.py 文件源码 项目:unrolled-gan 作者: musyoku 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_kde(data, dir=None, filename="kde", color="Greens"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    bg_color  = sns.color_palette(color, n_colors=256)[0]
    ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
    ax.set_axis_bgcolor(bg_color)
    kde = ax.get_figure()
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    kde.savefig("{}/{}".format(dir, filename))
utils.py 文件源码 项目:Iris-Classification-with-Heroku 作者: gaborvecsei 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plotPrediction(pred):
    """
    Plots the prediction than encodes it to base64
    :param pred: prediction accuracies
    :return: base64 encoded image as string
    """

    labels = ['setosa', 'versicolor', 'virginica']
    sns.set_context(rc={"figure.figsize": (5, 5)})
    with sns.color_palette("RdBu_r", 3):
        ax = sns.barplot(x=labels, y=pred)
    ax.set(ylim=(0, 1))

    # Base64 encode the plot
    stringIObytes = cStringIO.StringIO()
    sns.plt.savefig(stringIObytes, format='jpg')
    sns.plt.show()
    stringIObytes.seek(0)
    base64data = base64.b64encode(stringIObytes.read())
    return base64data
automation_demo.py 文件源码 项目:pymoku 作者: liquidinstruments 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def phase1_plot_setup():
    # Set up a 1x2 plot
    f, (ax1, ax2) = plt.subplots(1,2)
    f.suptitle('Phase 1 - Rise Times', fontsize=18, fontweight='bold')

    # Choose a colour palette and font size/style
    colours = sns.color_palette("muted")
    sns.set_context('poster')

    # Maximise the plotting window
    plot_backend = matplotlib.get_backend()
    mng = plt.get_current_fig_manager()
    if plot_backend == 'TkAgg':
        mng.resize(*mng.window.maxsize())
    elif plot_backend == 'wxAgg':
        mng.frame.Maximize(True)
    elif plot_backend == 'Qt4Agg':
        mng.window.showMaximized()

    return f, ax1, ax2
automation_demo.py 文件源码 项目:pymoku 作者: liquidinstruments 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def phase2_plot_setup():
    # Set up a 1x1 plot
    f, ax1 = plt.subplots(1,1)
    f.suptitle('Phase 2 - Line Width', fontsize=18, fontweight='bold')

    # Choose a colour palette and font size/style
    colours = sns.color_palette("muted")
    sns.set_context('poster')

    # Maximise the plotting window
    plot_backend = matplotlib.get_backend()
    mng = plt.get_current_fig_manager()
    if plot_backend == 'TkAgg':
        mng.resize(*mng.window.maxsize())
    elif plot_backend == 'wxAgg':
        mng.frame.Maximize(True)
    elif plot_backend == 'Qt4Agg':
        mng.window.showMaximized()

    return f, ax1
utils.py 文件源码 项目:flexCE 作者: bretthandrews 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_colors(cfg):
    """Get colors from config file or set them with seaborn color palette.

    Args:
        cfg (dict): config settings.

    Returns:
        list: colors
    """
    try:
        colors = cfg['Plot']['colors']
        if not isinstance(colors, list):
            colors = [colors]
    except KeyError:
        colors = sns.color_palette('bright')
    return colors
helpers.py 文件源码 项目:VASC 作者: wang-research 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def print_heatmap( points,label,id_map ):
    '''
    points: N_samples * N_features
    label: (int) N_samples
    id_map: map label id to its name
    '''
    # = sns.color_palette("RdBu_r", max(label)+1)
    #cNorm = colors.Normalize(vmin=0,vmax=max(label)) #normalise the colormap
    #scalarMap = cm.ScalarMappable(norm=cNorm,cmap='Paired') #map numbers to colors

    index = [id_map[i] for i in label]
    df = DataFrame( 
            points,
            columns = list(range(points.shape[1])),
            index = index
            )
    row_color = [current_palette[i] for i in label]

    cmap = sns.cubehelix_palette(as_cmap=True, rot=-.3, light=1)
    g = sns.clustermap( df,cmap=cmap,row_colors=row_color,col_cluster=False,xticklabels=False,yticklabels=False) #,standard_scale=1 )

    return g.fig
plot.py 文件源码 项目:LSGAN 作者: musyoku 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_kde(data, dir=None, filename="kde", color="Greens"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    bg_color  = sns.color_palette(color, n_colors=256)[0]
    ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
    ax.set_axis_bgcolor(bg_color)
    kde = ax.get_figure()
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    kde.savefig("{}/{}.png".format(dir, filename))
plot_true.py 文件源码 项目:LSGAN 作者: musyoku 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_kde(data, dir=None, filename="kde", color="Greens"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    bg_color  = sns.color_palette(color, n_colors=256)[0]
    ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
    ax.set_axis_bgcolor(bg_color)
    kde = ax.get_figure()
    pylab.xlim(-4, 4)
    pylab.ylim(-4, 4)
    kde.savefig("{}/{}".format(dir, filename))
styling.py 文件源码 项目:cohorts 作者: hammerlab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def set_styling():
    sb.set_style("white")
    red = colors.hex2color("#bb3f3f")
    blue = colors.hex2color("#5a86ad")
    deep_colors = sb.color_palette("deep")
    green = deep_colors[1]
    custom_palette = [red, blue, green]
    custom_palette.extend(deep_colors[3:])
    sb.set_palette(custom_palette)
    mpl.rcParams.update({"figure.figsize": np.array([6, 6]),
                         "legend.fontsize": 12,
                         "font.size": 16,
                         "axes.labelsize": 16,
                         "axes.labelweight": "bold",
                         "xtick.labelsize": 16,
                         "ytick.labelsize": 16})
visualization.py 文件源码 项目:Default-Credit-Card-Prediction 作者: AlexPnt 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def visualize_pca2D(X,y):
    """
    Visualize the first two principal components

    Keyword arguments:
    X -- The feature vectors
    y -- The target vector
    """
    pca = PCA(n_components = 2)
    principal_components = pca.fit_transform(X)

    palette = sea.color_palette()
    plt.scatter(principal_components[y==0, 0], principal_components[y==0, 1], marker='s',color='green',label="Paid", alpha=0.5,edgecolor='#262626', facecolor=palette[1], linewidth=0.15)
    plt.scatter(principal_components[y==1, 0], principal_components[y==1, 1], marker='^',color='red',label="Default", alpha=0.5,edgecolor='#262626''', facecolor=palette[2], linewidth=0.15)

    leg = plt.legend(loc='upper right', fancybox=True)
    leg.get_frame().set_alpha(0.5)
    plt.title("Two-Dimensional Principal Component Analysis")
    plt.tight_layout

    #save fig
    output_dir='img'
    save_fig(output_dir,'{}/pca2D.png'.format(output_dir))
visualization.py 文件源码 项目:Default-Credit-Card-Prediction 作者: AlexPnt 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def visualize_pca3D(X,y):
    """
    Visualize the first three principal components

    Keyword arguments:
    X -- The feature vectors
    y -- The target vector
    """
    pca = PCA(n_components = 3)
    principal_components = pca.fit_transform(X)

    fig = pylab.figure()
    ax = Axes3D(fig)
    # azm=30
    # ele=30
    # ax.view_init(azim=azm,elev=ele)

    palette = sea.color_palette()
    ax.scatter(principal_components[y==0, 0], principal_components[y==0, 1], principal_components[y==0, 2], label="Paid", alpha=0.5, 
                edgecolor='#262626', c=palette[1], linewidth=0.15)
    ax.scatter(principal_components[y==1, 0], principal_components[y==1, 1], principal_components[y==1, 2],label="Default", alpha=0.5, 
                edgecolor='#262626''', c=palette[2], linewidth=0.15)

    ax.legend()
    plt.show()
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def makeGarbageDimTs():
    np.random.seed(123)
    seqLen = 750
    squareLen = seqLen / 17.
    seq = synth.notSoRandomWalk(seqLen, std=.05,
        trendFilterLength=(seqLen // 2), lpfLength=2)

    sb.set_style('white')
    _, ax = plt.subplots()
    # color = sb.color_palette()[1]
    # ax.plot(seq, lw=4, color="#660000") # red I'm using in keynote
    ax.plot(seq, lw=4, color="#CC0000") # red I'm using in keynote
    ax.set_xlim([-squareLen, seqLen + squareLen])
    ax.set_ylim([np.min(seq) * 2, np.max(seq) * 2])

    sb.despine(left=True)
    plt.show()

# def makeMethodsWarpedTs():


# ================================================================ Better Fig1
analysis.py 文件源码 项目:crop-seq 作者: epigen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_level_colors(index):
    pallete = sns.color_palette("colorblind") * int(1e6)

    colors = list()

    if hasattr(index, "levels"):
        for level in index.levels:
            color_dict = dict(zip(level, pallete))
            level_colors = [color_dict[x] for x in index.get_level_values(level.name)]
            colors.append(level_colors)
    else:
        color_dict = dict(zip(set(index), pallete))
        index_colors = [color_dict[x] for x in index]
        colors.append(index_colors)

    return colors
clusterplot.py 文件源码 项目:IgDiscover 作者: NBISweden 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_clustermap(sequences, title, plotpath, size=300, dpi=200):
    """
    Plot a clustermap of the given sequences

    size -- Downsample to this many sequences
    title -- plot title

    Return the number of clusters.
    """
    logger.info('Clustering %d sequences (downsampled to at most %d)', len(sequences), size)
    sequences = downsampled(sequences, size)
    df, linkage, clusters = cluster_sequences(sequences)

    palette = sns.color_palette([(0.15, 0.15, 0.15)])
    palette += sns.color_palette('Spectral', n_colors=max(clusters), desat=0.9)
    row_colors = [ palette[cluster_id] for cluster_id in clusters ]
    cm = sns.clustermap(df,
            row_linkage=linkage,
            col_linkage=linkage,
            row_colors=row_colors,
            linewidths=None,
            linecolor='none',
            figsize=(210/25.4, 210/25.4),
            cmap='Blues',
            xticklabels=False,
            yticklabels=False
    )
    if title is not None:
        cm.fig.suptitle(title)
    cm.savefig(plotpath, dpi=dpi)

    # free the memory used by the plot
    import matplotlib.pyplot as plt
    plt.close('all')

    return len(set(clusters))
delocalization.py 文件源码 项目:exatomic 作者: exa-analytics 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_energy(curv, color=None, title='', figsize=(21,5),
                nylabel=3, nxlabel=5, fontsize=24):
    """
    Accepts the output of compute_curvature or combine_curvature and
    returns a figure with appropriate styling.
    """
    def _deltaE(col):
        if col.name == 'n': return col
        cat = np.linspace(col.values[0], 0, 51)
        an = np.linspace(0, col.values[-1], 51)
        return col - np.hstack([cat, an])
    figargs = {'figsize': figsize}
    fig = _gen_figure(nxplot=1, nyplot=3, nxlabel=nxlabel,
                      figargs=figargs, fontsize=fontsize)
    ax, axnone, ax1 = fig.get_axes()
    axnone.set_visible(False)
    color = sns.color_palette('cubehelix', curv.shape[1] - 1) \
            if color is None else color
    plargs = {'x': 'n', 'color': color, 'title': title, 'legend': False}
    curvy = curv.apply(_deltaE)
    curv.plot(ax=ax, **plargs)
    ax.set_ylim([curv.min().min(), curv.max().max()])
    ax.set_ylabel('$\Delta$E (eV)', fontsize=fontsize)
    ax.set_xlabel('$\Delta$N', fontsize=fontsize)
    curvy.plot(ax=ax1, **plargs)
    del curvy['n']
    ax1.set_ylim([curvy.min().min(), curvy.max().max()])
    ax1.set_ylabel('$\Delta \Delta$E (eV)', fontsize=fontsize)
    ax.set_xlabel('$\Delta$N', fontsize=fontsize)
    loc = [1.2, (9 - curv.shape[1]) / 25]
    ax.legend(*ax.get_legend_handles_labels(), loc=loc)
    return fig
ulilz_CNN.py 文件源码 项目:QDREN 作者: andreamad8 项目源码 文件源码 阅读 59 收藏 0 点赞 0 评论 0
def plot_dist(train_y,dev_y,test_y):
    import seaborn as sns
    import matplotlib.pyplot as plt
    plt.rc('text', usetex=True)
    plt.rc('font', family='Times-Roman')
    sns.set_style(style='white')
    color = sns.color_palette("Set2", 10)
    fig = plt.figure(figsize=(8,12))

    ax1 = fig.add_subplot(3, 1, 1)
    # plt.title("Label distribution",fontsize=20)
    sns.distplot(train_y,kde=False,label='Training', hist=True, norm_hist=True,color="blue")
    ax1.set_xlabel("Answer")
    ax1.set_ylabel("Frequency")
    ax1.set_xlim([0,500])
    plt.legend(loc='best')

    ax2 = fig.add_subplot(3, 1, 2)
    sns.distplot(dev_y,kde=False,label='Validation', hist=True, norm_hist=True,color="green")
    ax2.set_xlabel("Answer")
    ax2.set_ylabel("Frequency")
    ax2.set_xlim([0,500])
    plt.legend(loc='best')

    ax3 = fig.add_subplot(3, 1, 3)
    sns.distplot(test_y,kde=False,label='Test', hist=True, norm_hist=True,color="red")
    ax3.set_xlabel("Answer")
    ax3.set_ylabel("Frequency")
    ax3.set_xlim([0,500])
    plt.legend(loc='best')



    plt.savefig('checkpoints/label_dist.pdf', format='pdf', dpi=300)

    plt.show()
plotter.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def contour_plot(lab, element, labels=False, days=False, last_year=False):
    plt.figure()
    plt.title(element + ' concentration')
    resoluion = 100
    n = math.ceil(lab.time.size / resoluion)
    if last_year:
        k = n - int(1 / lab.dt)
    else:
        k = 1
    if days:
        X, Y = np.meshgrid(lab.time[k::n] * 365, -lab.x)
        plt.xlabel('Time')
    else:
        X, Y = np.meshgrid(lab.time[k::n], -lab.x)
        plt.xlabel('Time')
    z = lab.species[element]['concentration'][:, k - 1:-1:n]
    CS = plt.contourf(X, Y, z, 51, cmap=ListedColormap(
        sns.color_palette("Blues", 51)), origin='lower')
    if labels:
        plt.clabel(CS, inline=1, fontsize=10, colors='w')
    cbar = plt.colorbar(CS)
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    cbar.ax.set_ylabel('%s [M/V]' % element)
    if element == 'Temperature':
        plt.title('Temperature contour plot')
        cbar.ax.set_ylabel('Temperature, C')
    if element == 'pH':
        plt.title('pH contour plot')
        cbar.ax.set_ylabel('pH')
    return ax


问题


面经


文章

微信
公众号

扫码关注公众号