python类median()的实例源码

game.py 文件源码 项目:temci 作者: parttimenerd 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_html(self, base_file_name: str, h_level: int) -> str:
        sp = None # type: SingleProperty
        columns = [
            BOTableColumn("n", "{:5d}", lambda sp, _: sp.observations(), first),
            BOTableColumn("mean", "{:10.5f}", lambda sp, _: sp.mean(), first),
            BOTableColumn("mean / best mean", "{:5.5%}", lambda sp, means: sp.mean() / min(means), first),
            BOTableColumn("mean / mean of first impl", "{:5.5%}", lambda sp, means: sp.mean() / means[0], first),
            BOTableColumn("std / mean", "{:5.5%}", lambda sp, _: sp.std_dev_per_mean(), first),
            BOTableColumn("std / best mean", "{:5.5%}", lambda sp, means: sp.std_dev() / min(means), first),
            BOTableColumn("std / mean of first impl", "{:5.5%}", lambda sp, means: sp.std_dev() / means[0], first),
            BOTableColumn("median", "{:5.5f}", lambda sp, _: sp.median(), first)
        ]
        html = """
        <h{h}>Input: {input}</h{h}>
        The following plot shows the actual distribution of the measurements for each implementation.
        {box_plot}
        """.format(h=h_level, input=repr(self.input), box_plot=self.get_box_plot_html(base_file_name))
        html += self.table_html_for_vals_per_impl(columns, base_file_name)
        return html
astroemperor.py 文件源码 项目:astroEMPEROR 作者: ReddTea 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def alt_results(self, samples, kplanets):
        titles = sp.array(["Amplitude","Period","Longitude", "Phase","Eccentricity", 'Acceleration', 'Jitter', 'Offset', 'MACoefficient', 'MATimescale', 'Stellar Activity'])
        namen = sp.array([])
        ndim = kplanets * 5 + self.nins*2*(self.MOAV+1) + self.totcornum + 1

        RESU = sp.zeros((ndim, 5))
        for k in range(kplanets):
            namen = sp.append(namen, [titles[i] + '_'+str(k) for i in range(5)])
        namen = sp.append(namen, titles[5])  # for acc
        for i in range(self.nins):
            namen = sp.append(namen, [titles[ii] + '_'+str(i+1) for ii in sp.arange(2)+6])
            for c in range(self.MOAV):
                namen = sp.append(namen, [titles[ii] + '_'+str(i+1) + '_'+str(c+1) for ii in sp.arange(2)+8])
        for h in range(self.totcornum):
            namen = sp.append(namen, titles[-1]+'_'+str(h+1))

        alt_res = map(lambda v: (v[2], v[3]-v[2], v[2]-v[1], v[4]-v[2], v[2]-v[0]),
                      zip(*np.percentile(samples, [2, 16, 50, 84, 98], axis=0)))
        logdat = '\nAlternative results with uncertainties based on the 2nd, 16th, 50th, 84th and 98th percentiles of the samples in the marginalized distributions'
        logdat = '\nFormat is like median +- 1-sigma, +- 2-sigma'
        for res in range(ndim):
            logdat += '\n'+namen[res]+'     : '+str(alt_res[res][0])+' +- '+str(alt_res[res][1:3]) +'    2%   +- '+str(alt_res[res][3:5])
            RESU[res] = sp.percentile(samples, [2, 16, 50, 84, 98], axis=0)[:, res]
        print(logdat)
        return RESU
BackgroundSubtraction.py 文件源码 项目:nimo 作者: wolfram2012 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _getMedianVals(self):
        '''
        @return: A scipy matrix representing the gray-scale median values of the image stack.
           If you want a pyvision image, just wrap the result in pv.Image(result).
        '''
        self._imageStack = self._imageBuffer.asStackBW()
        medians = sp.median(self._imageStack, axis=0) #median of each pixel jet in stack
        return medians
BackgroundSubtraction.py 文件源码 项目:nimo 作者: wolfram2012 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _updateMedian(self):
        curImg = self._imageBuffer.getLast()
        curMat = curImg.asMatrix2D()
        median = self._medians
        up = (curMat > median)*1.0
        down = (curMat < median)*1.0
        self._medians = self._medians + up - down
game.py 文件源码 项目:temci 作者: parttimenerd 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def property_filter_half(cur_index: int, all: t.List[Program], property_func: t.Callable[[Program], float],
                          remove_upper_half: bool) -> bool:
    """
    Note: if the number of programs is uneven, then one program will belong to the upper and the lower half.
    """
    vals = [property_func(p) for p in all]
    cur_val = vals[cur_index]
    median = sp.median(vals)
    if (remove_upper_half and cur_val > median) or (not remove_upper_half and cur_val < median):
        return False
    return True
epsilon.py 文件源码 项目:pyabc 作者: neuralyzer 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def initialize(self, sample_from_prior, distance_to_ground_truth_function):
        super().initialize(sample_from_prior,
                           distance_to_ground_truth_function)
        eps_logger.debug("calc initial epsilon")
        # calculate initial epsilon if not given
        if self._initial_epsilon == 'from_sample':
            distances = sp.asarray([distance_to_ground_truth_function(x)
                                    for x in sample_from_prior])
            eps_t0 = sp.median(distances) * self.median_multiplier
            self._look_up = {0: eps_t0}
        else:
            self._look_up = {0: self._initial_epsilon}

        eps_logger.info("initial epsilon is {}".format(self._look_up[0]))
epsilon.py 文件源码 项目:pyabc 作者: neuralyzer 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def __call__(self, t, history):
        try:
            return self._look_up[t]
        except KeyError:
            df_weighted = history.get_weighted_distances(None)
            median = weighted_median(
                df_weighted.distance.as_matrix(), df_weighted.w.as_matrix())
            self._look_up[t] = median * self.median_multiplier
            eps_logger.debug("new eps, t={}, eps={}"
                             .format(t, self._look_up[t]))
            return self._look_up[t]
MR.py 文件源码 项目:RFCN 作者: zengxianyu 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __MR_final_saliency(self,integrated_sal, labels, aff):
        # get binary image
        if self.binary_thre == None:
            thre = sp.median(integrated_sal.astype(float))

        mask = integrated_sal > thre
        # get indicator
        ind = self.__MR_second_stage_indictor(mask,labels)

        return self.__MR_saliency(aff,ind)

    # read image


问题


面经


文章

微信
公众号

扫码关注公众号