python类mean()的实例源码

rvm.py 文件源码 项目:prml 作者: Yevgnen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _init_hyperparameters(self, X, T):
        n_samples = X.shape[0]

        if (self.mean is None):
            self.mean = sp.zeros(n_samples + 1)

        if (self.cov is None):
            self.cov = sp.ones(n_samples + 1)

        if (self.beta is None):
            self.beta = 1

        return
rvm.py 文件源码 项目:prml 作者: Yevgnen 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def predict(self, X, T, X_new):
        """Predict ``X_new`` with given traning data ``(X, T)``."""
        n_tests = X_new.shape[0]
        phi = sp.r_[sp.ones(n_tests).reshape(1, -1), self._compute_design_matrix(X_new, X)]  # Add x0
        phi = phi[self.rv_indices, :]

        predict_mean = sp.dot(self.mean, phi)
        predict_cov = 1 / self.beta + sp.dot(phi.T, sp.dot(self.cov, phi)).diagonal()

        return predict_mean, predict_cov
rvm.py 文件源码 项目:prml 作者: Yevgnen 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def score(self, X_train, T_train, X_test, T_test):
        Y = self.predict(X_train, T_train, X_test)

        return sp.mean(sp.isclose(Y, T_test))
dga_detection.py 文件源码 项目:DGA-Detection 作者: philarkwright 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def check_domain(input_domain):

    baseline, total_bigrams_settings = load_settings()

    if os.path.isfile('data/database.json'):
        with open('data/database.json', 'r') as f:
            try:
                bigram_dict = json.load(f)
            # if the file is empty the ValueError will be thrown
            except ValueError:
                bigram_dict = {}

    percentage = []

    for  bigram_position in xrange(len(input_domain) - 1): #Run through each bigram in the data
        if input_domain[bigram_position:bigram_position + 2] in bigram_dict: #Check if bigram is in dictionary 
            percentage.append((bigram_dict[input_domain[bigram_position:bigram_position + 2]] / total_bigrams_settings) * 100) #Get bigram dictionary value and convert to percantage
        else:
            percentage.append(0) #Bigram value is 0 as it doesn't exist

    if baseline >= scipy.mean(percentage):
        print 67 * "*"
        print 'Baseline:', baseline, 'Domain Average Bigram Percentage:',scipy.mean(percentage)
        return 1
    else:
        return 0

    percentage = [] #Clear percentage list
sampler.py 文件源码 项目:dzetsaka 作者: lennepkade 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def transform_3d(self, X):
            X_resampled = sp.zeros((X.shape[0], self.n_samples, X.shape[2]))
            xnew = sp.linspace(0, 1, self.n_samples)
            for i in range(X.shape[0]):
                end = last_index(X[i])
                for j in range(X.shape[2]):
                    X_resampled[i, :, j] = resampled(X[i, :end, j], n_samples=self.n_samples, kind=self.interp_kind)
                # Compute indices based on alignment of dimension self.scaling_col_idx with the reference
                indices_xy = [[] for _ in range(self.n_samples)]

                if self.save_path and len(DTWSampler.saved_dtw_path)==(self.d+1): # verify if full dtw path already exists
                    current_path = DTWSampler.saved_dtw_path[i]
                else:
                    # append path
                    current_path = dtw_path(X_resampled[i, :, self.scaling_col_idx], self.reference_series)           
                    if self.save_path: # save current path is asked
                        DTWSampler.saved_dtw_path.append(current_path)                

                for t_current, t_ref in current_path:
                    indices_xy[t_ref].append(t_current)
                for j in range(X.shape[2]):
                    if False and j == self.scaling_col_idx:
                        X_resampled[i, :, j] = xnew
                    else:
                        ynew = sp.array([sp.mean(X_resampled[i, indices, j]) for indices in indices_xy])
                        X_resampled[i, :, j] = ynew
            return X_resampled
gmm_ridge.py 文件源码 项目:dzetsaka 作者: lennepkade 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self):
        self.ni = []
        self.prop = []
        self.mean = []
        self.cov =[]
        self.Q = []
        self.L = []
        self.classnum = [] # to keep right labels
        self.tau = 0.0
gmm_ridge.py 文件源码 项目:dzetsaka 作者: lennepkade 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def BIC(self,x,y,tau=None):
        '''
        Computes the Bayesian Information Criterion of the model
        '''
        ## Get information from the data
        C,d = self.mean.shape
        n = x.shape[0]

        ## Initialization
        if tau is None:
            TAU=self.tau
        else:
            TAU=tau

        ## Penalization
        P = C*(d*(d+3)/2) + (C-1)
        P *= sp.log(n)

        ## Compute the log-likelihood
        L = 0
        for c in range(C):
            j = sp.where(y==(c+1))[0]
            xi = x[j,:]
            invCov,logdet = self.compute_inverse_logdet(c,TAU)
            cst = logdet - 2*sp.log(self.prop[c]) # Pre compute the constant
            xi -= self.mean[c,:]
            temp = sp.dot(invCov,xi.T).T
            K = sp.sum(xi*temp,axis=1)+cst
            L +=sp.sum(K)
            del K,xi

        return L + P
c9_30_utility_function_impact_Of_A.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def myUtilityFunction(ret,A=1):
    meanDaily=sp.mean(ret)
    varDaily=sp.var(ret)
    meanAnnual=(1+meanDaily)**252
    varAnnual=varDaily*252
    return meanAnnual- 0.5*A*varAnnual
c9_21_optimal_portfolio_based_on_Sortino_ratio.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def treynor(R,w):
    betaP=portfolioBeta(betaGiven,w)
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return (sp.dot(w,ret) - rf)/betaP
# function 4: for given n-1 weights, return a negative sharpe ratio
c9_19_treynor_ratio.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def treynor(R,w):
    betaP=portfolioBeta(betaGiven,w)
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return (sp.dot(w,ret) - rf)/betaP
#
# function 4: for given n-1 weights, return a negative sharpe ratio
c9_44_impact_of_correlation_2stock_portfolio.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def portfolioRet(R,w):
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return sp.dot(w,ret)
c9_18_sharpe_ratio.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def sharpe(R,w):
    var = portfolio_var(R,w)
    mean_return=sp.mean(R,axis=0)
    ret = sp.array(mean_return)
    return (sp.dot(w,ret) - rf)/sp.sqrt(var)
# function 4: for given n-1 weights, return a negative sharpe ratio
c9_32_mean_and_var.py 文件源码 项目:Python-for-Finance-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 75 收藏 0 点赞 0 评论 0
def meanVarAnnual(ret):
    meanDaily=sp.mean(ret)
    varDaily=sp.var(ret)
    meanAnnual=(1+meanDaily)**252
    varAnnual=varDaily*252
    return meanAnnual, varAnnual
MR.py 文件源码 项目:RFCN 作者: zengxianyu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __MR_superpixel_mean_vector(self,img,labels):
        s = sp.amax(labels)+1
        vec = sp.zeros((s,3)).astype(float)
        for i in range(s):
            mask = labels == i
            super_v = img[mask].astype(float)
            mean = sp.mean(super_v,0)
            vec[i] = mean
        return vec
astroemperor.py 文件源码 项目:astroEMPEROR 作者: ReddTea 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_data(instruments):
    '''
    Data pre-processing
    '''
    nins = len(instruments)
    instruments = sp.array([sp.loadtxt('datafiles/'+x) for x in instruments])
    def data(data, ins_no):
        Time, Radial_Velocity, Err = data.T[:3]  # el error de la rv
        Radial_Velocity -= sp.mean(Radial_Velocity)
        Flag = sp.ones(len(Time)) * ins_no  # marca el instrumento al q pertenece
        Staract = data.T[3:]
        return sp.array([Time, Radial_Velocity, Err, Flag, Staract])

    def sortstuff(tryin):
        t, rv, er, flag = tryin
        order = sp.argsort(t)
        return sp.array([x[order] for x in [t, rv, er, flag]])

    fd = sp.array([]), sp.array([]), sp.array([]), sp.array([])

    for k in range(len(instruments)):  # appends all the data in megarg
        t, rv, er, flag, star = data(instruments[k], k)
        fd = sp.hstack((fd, [t, rv, er, flag] ))  # ojo this, list not array

    fd[0] = fd[0] - min(fd[0])
    alldat = sp.array([])
    try:
        staract = sp.array([data(instruments[i], i)[4] for i in range(nins)])
    except:
        staract = sp.array([sp.array([]) for i in range(nins)])
    starflag = sp.array([sp.array([i for k in range(len(staract[i]))]) for i in range(len(staract))])
    tryin = sortstuff(fd)
    for i in range(len(starflag)):
        for j in range(len(starflag[i])):
            staract[i][j] -= sp.mean(staract[i][j])
    totcornum = 0
    for correlations in starflag:
        if len(correlations) > 0:
            totcornum += len(correlations)

    return fd, staract, starflag, totcornum
astroemperor.py 文件源码 项目:astroEMPEROR 作者: ReddTea 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def normal_pdf(x, mean, variance):
    var = 2 * variance
    return ( - (x - mean) ** 2 / var)
SLIC_new_cityscapes_training_server_1.py 文件源码 项目:SLIC_cityscapes 作者: wpqmanu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def update(self, centers):
        # sums = [scipy.zeros(5) for i in range(len(centers))]
        # nums = [0 for i in range(len(centers))]
        # width, height = self.img.shape[:2]
        print "E step"
        new_centers=[]
        nan_record=[]

        for i in xrange(len(centers)):
            current_region=self.xylab[self.assignedindex == i]
            if current_region.size>0: #non-empty region
                new_centers.append(scipy.mean(current_region, 0))
            else: # empty region
                nan_record.append(i)

        # after we get full nan_record list, update assignment index (elimnate those indexes in reverse order)
        for nan_value in nan_record[::-1]:
            self.assignedindex[self.assignedindex>nan_value]=self.assignedindex[self.assignedindex>nan_value]-1


        for new_center_index in range(len(new_centers)):
            # print new_center_index
            new_centers[new_center_index][0] = math.floor(new_centers[new_center_index][0])
            new_centers[new_center_index][1] = math.floor(new_centers[new_center_index][1])
            new_centers[new_center_index][2:]=self.labimg[math.floor(new_centers[new_center_index][0])][math.floor(new_centers[new_center_index][1])]

        return new_centers,nan_record
SLIC.py 文件源码 项目:SLIC_cityscapes 作者: wpqmanu 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def update(self, centers):
        sums = [scipy.zeros(5) for i in range(len(centers))]
        nums = [0 for i in range(len(centers))]
        width, height = self.img.shape[:2]
        print "E step"
        return [scipy.mean(self.xylab[self.assignedindex == i], 0) for i in xrange(len(centers))]
SLIC_new_cityscapes_training_server_parallel_spark.py 文件源码 项目:SLIC_cityscapes 作者: wpqmanu 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def update(self, centers):
        # sums = [scipy.zeros(5) for i in range(len(centers))]
        # nums = [0 for i in range(len(centers))]
        # width, height = self.img.shape[:2]
        print "E step"
        new_centers=[]
        nan_record=[]

        for i in xrange(len(centers)):
            current_region=self.xylab[self.assignedindex == i]
            if current_region.size>0: #non-empty region
                new_centers.append(scipy.mean(current_region, 0))
            else: # empty region
                nan_record.append(i)

        # after we get full nan_record list, update assignment index (elimnate those indexes in reverse order)
        for nan_value in nan_record[::-1]:
            self.assignedindex[self.assignedindex>nan_value]=self.assignedindex[self.assignedindex>nan_value]-1


        for new_center_index in range(len(new_centers)):
            # print new_center_index
            new_centers[new_center_index][0] = math.floor(new_centers[new_center_index][0])
            new_centers[new_center_index][1] = math.floor(new_centers[new_center_index][1])
            new_centers[new_center_index][2:]=self.labimg[math.floor(new_centers[new_center_index][0])][math.floor(new_centers[new_center_index][1])]

        return new_centers,nan_record
SLIC_new_cityscapes_training_server_parallel.py 文件源码 项目:SLIC_cityscapes 作者: wpqmanu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def update(self, centers):
        # sums = [scipy.zeros(5) for i in range(len(centers))]
        # nums = [0 for i in range(len(centers))]
        # width, height = self.img.shape[:2]
        print "E step"
        new_centers=[]
        nan_record=[]

        for i in xrange(len(centers)):
            current_region=self.xylab[self.assignedindex == i]
            if current_region.size>0: #non-empty region
                new_centers.append(scipy.mean(current_region, 0))
            else: # empty region
                nan_record.append(i)

        # after we get full nan_record list, update assignment index (elimnate those indexes in reverse order)
        for nan_value in nan_record[::-1]:
            self.assignedindex[self.assignedindex>nan_value]=self.assignedindex[self.assignedindex>nan_value]-1


        for new_center_index in range(len(new_centers)):
            # print new_center_index
            new_centers[new_center_index][0] = math.floor(new_centers[new_center_index][0])
            new_centers[new_center_index][1] = math.floor(new_centers[new_center_index][1])
            new_centers[new_center_index][2:]=self.labimg[math.floor(new_centers[new_center_index][0])][math.floor(new_centers[new_center_index][1])]

        return new_centers,nan_record


问题


面经


文章

微信
公众号

扫码关注公众号