python类maximum()的实例源码

util.py 文件源码 项目:Cascade-CNN-Face-Detection 作者: gogolgrind 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def nms(dets,proba, T):

        dets = dets.astype("float")
        if len(dets) == 0:
            return []

        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = proba

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = sp.maximum(x1[i], x1[order[1:]])
            yy1 = sp.maximum(y1[i], y1[order[1:]])
            xx2 = sp.minimum(x2[i], x2[order[1:]])
            yy2 = sp.minimum(y2[i], y2[order[1:]])

            w = sp.maximum(0.0, xx2 - xx1 + 1)
            h = sp.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = sp.where(ovr <= T)[0]
            order = order[inds + 1]

        return keep
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def self_eval(pred,train_data):
    '''
    :pred 
    :train_data ?? labels
    '''
    try:
        labels=train_data.get_label()
    except:
        labels=train_data
    epsilon = 1e-15
    pred = np.maximum(epsilon,  pred)
    pred = np.minimum(1-epsilon,pred)
    ll = sum(labels*np.log(pred) + (1 - labels)*np.log(1 - pred))
    ll = ll * (-1.0)/len(labels)
    return 'log loss', ll, False
np_utils.py 文件源码 项目:CopyNet 作者: MingyuanXie 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
B_2_find_RF_param.py 文件源码 项目:tencent_social_algo 作者: Folieshell 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def logloss(act, pred):
  epsilon = 1e-15
  pred = sp.maximum(epsilon, pred)
  pred = sp.minimum(1-epsilon, pred)
  ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
  ll = ll * -1.0/len(act)
  return ll
B_3_grid_search.py 文件源码 项目:tencent_social_algo 作者: Folieshell 项目源码 文件源码 阅读 49 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
np_utils.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:InnerOuterRNN 作者: Chemoinformatics 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
net.py 文件源码 项目:GitImpact 作者: ludovicdmt 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
np_utils.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
    res *= -1.0/len(y)
    return res
libscores.py 文件源码 项目:AutoML5 作者: djajetic 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def f1_metric (solution, prediction, task='binary.classification'):
    ''' Compute the normalized f1 measure. The binarization differs 
        for the multi-label and multi-class case. 
        A non-weighted average over classes is taken.
        The score is normalized.'''
    label_num = solution.shape[1]
    score = np.zeros(label_num)
    bin_prediction = binarize_predictions(prediction, task)
    [tn,fp,tp,fn] = acc_stat(solution, bin_prediction)
    # Bounding to avoid division by 0
    eps = 1e-15
    true_pos_num = sp.maximum (eps, tp+fn)
    found_pos_num = sp.maximum (eps, tp+fp)
    tp = sp.maximum (eps, tp)
    tpr = tp / true_pos_num      # true positive rate (recall)
    ppv = tp / found_pos_num     # positive predictive value (precision)
    arithmetic_mean = 0.5 * sp.maximum (eps, tpr+ppv)
    # Harmonic mean:
    f1 = tpr*ppv/arithmetic_mean
    # Average over all classes
    f1 = mvmean(f1)
    # Normalize: 0 for random, 1 for perfect
    if (task != 'multiclass.classification') or (label_num==1):
    # How to choose the "base_f1"?
    # For the binary/multilabel classification case, one may want to predict all 1.
    # In that case tpr = 1 and ppv = frac_pos. f1 = 2 * frac_pos / (1+frac_pos)
    #     frac_pos = mvmean(solution.ravel())
    #     base_f1 = 2 * frac_pos / (1+frac_pos)
    # or predict random values with probability 0.5, in which case
    #     base_f1 = 0.5
    # the first solution is better only if frac_pos > 1/3.
    # The solution in which we predict according to the class prior frac_pos gives
    # f1 = tpr = ppv = frac_pos, which is worse than 0.5 if frac_pos<0.5
    # So, because the f1 score is used if frac_pos is small (typically <0.1)
    # the best is to assume that base_f1=0.5
        base_f1 = 0.5
    # For the multiclass case, this is not possible (though it does not make much sense to
    # use f1 for multiclass problems), so the best would be to assign values at random to get 
    # tpr=ppv=frac_pos, where frac_pos=1/label_num
    else:
        base_f1=1./label_num
    score = (f1 - base_f1) / sp.maximum(eps, (1 - base_f1))
    return score
libscores.py 文件源码 项目:AutoML4 作者: djajetic 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def f1_metric (solution, prediction, task='binary.classification'):
    ''' Compute the normalized f1 measure. The binarization differs 
        for the multi-label and multi-class case. 
        A non-weighted average over classes is taken.
        The score is normalized.'''
    label_num = solution.shape[1]
    score = np.zeros(label_num)
    bin_prediction = binarize_predictions(prediction, task)
    [tn,fp,tp,fn] = acc_stat(solution, bin_prediction)
    # Bounding to avoid division by 0
    eps = 1e-15
    true_pos_num = sp.maximum (eps, tp+fn)
    found_pos_num = sp.maximum (eps, tp+fp)
    tp = sp.maximum (eps, tp)
    tpr = tp / true_pos_num      # true positive rate (recall)
    ppv = tp / found_pos_num     # positive predictive value (precision)
    arithmetic_mean = 0.5 * sp.maximum (eps, tpr+ppv)
    # Harmonic mean:
    f1 = tpr*ppv/arithmetic_mean
    # Average over all classes
    f1 = mvmean(f1)
    # Normalize: 0 for random, 1 for perfect
    if (task != 'multiclass.classification') or (label_num==1):
    # How to choose the "base_f1"?
    # For the binary/multilabel classification case, one may want to predict all 1.
    # In that case tpr = 1 and ppv = frac_pos. f1 = 2 * frac_pos / (1+frac_pos)
    #     frac_pos = mvmean(solution.ravel())
    #     base_f1 = 2 * frac_pos / (1+frac_pos)
    # or predict random values with probability 0.5, in which case
    #     base_f1 = 0.5
    # the first solution is better only if frac_pos > 1/3.
    # The solution in which we predict according to the class prior frac_pos gives
    # f1 = tpr = ppv = frac_pos, which is worse than 0.5 if frac_pos<0.5
    # So, because the f1 score is used if frac_pos is small (typically <0.1)
    # the best is to assume that base_f1=0.5
        base_f1 = 0.5
    # For the multiclass case, this is not possible (though it does not make much sense to
    # use f1 for multiclass problems), so the best would be to assign values at random to get 
    # tpr=ppv=frac_pos, where frac_pos=1/label_num
    else:
        base_f1=1./label_num
    score = (f1 - base_f1) / sp.maximum(eps, (1 - base_f1))
    return score
beacon_analysis.py 文件源码 项目:digital_rf 作者: MITHaystack 项目源码 文件源码 阅读 50 收藏 0 点赞 0 评论 0
def outlier_removed_fit(m, w = None, n_iter=10, polyord=7):
    """
    Remove outliers using fited data.

    Args:
        m (:obj:`numpy array`): Phase curve.
        n_iter (:obj:'int'): Number of iteration outlier removal
        polyorder (:obj:'int'): Order of polynomial used.

    Returns:
        fit (:obj:'numpy array'): Curve with outliers removed
    """
    if w is None:
        w = sp.ones_like(m)
    W = sp.diag(sp.sqrt(w))
    m2 = sp.copy(m)
    tv = sp.linspace(-1, 1, num=len(m))
    A = sp.zeros([len(m), polyord])
    for j in range(polyord):
        A[:, j] = tv**(float(j))
    A2 = sp.dot(W,A)
    m2w = sp.dot(m2,W)
    fit = None
    for i in range(n_iter):
        xhat = sp.linalg.lstsq(A2, m2w)[0]
        fit = sp.dot(A, xhat)
        # use gradient for central finite differences which keeps order
        resid = sp.gradient(fit - m2)
        std = sp.std(resid)
        bidx = sp.where(sp.absolute(resid) > 2.0*std)[0]
        for bi in bidx:
            A2[bi,:]=0.0
            m2[bi]=0.0
            m2w[bi]=0.0
    if debug_plot:
        plt.plot(m2,label="outlier removed")
        plt.plot(m,label="original")
        plt.plot(fit,label="fit")
        plt.legend()
        plt.ylim([sp.minimum(fit)-std*3.0,sp.maximum(fit)+std*3.0])
        plt.show()
    return(fit)
libscores.py 文件源码 项目:automl_gpu 作者: abhishekkrthakur 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def f1_metric (solution, prediction, task='binary.classification'):
    ''' Compute the normalized f1 measure. The binarization differs 
        for the multi-label and multi-class case. 
        A non-weighted average over classes is taken.
        The score is normalized.'''
    label_num = solution.shape[1]
    score = np.zeros(label_num)
    bin_prediction = binarize_predictions(prediction, task)
    [tn,fp,tp,fn] = acc_stat(solution, bin_prediction)
    # Bounding to avoid division by 0
    eps = 1e-15
    true_pos_num = sp.maximum (eps, tp+fn)
    found_pos_num = sp.maximum (eps, tp+fp)
    tp = sp.maximum (eps, tp)
    tpr = tp / true_pos_num      # true positive rate (recall)
    ppv = tp / found_pos_num     # positive predictive value (precision)
    arithmetic_mean = 0.5 * sp.maximum (eps, tpr+ppv)
    # Harmonic mean:
    f1 = tpr*ppv/arithmetic_mean
    # Average over all classes
    f1 = mvmean(f1)
    # Normalize: 0 for random, 1 for perfect
    if (task != 'multiclass.classification') or (label_num==1):
    # How to choose the "base_f1"?
    # For the binary/multilabel classification case, one may want to predict all 1.
    # In that case tpr = 1 and ppv = frac_pos. f1 = 2 * frac_pos / (1+frac_pos)
    #     frac_pos = mvmean(solution.ravel())
    #     base_f1 = 2 * frac_pos / (1+frac_pos)
    # or predict random values with probability 0.5, in which case
    #     base_f1 = 0.5
    # the first solution is better only if frac_pos > 1/3.
    # The solution in which we predict according to the class prior frac_pos gives
    # f1 = tpr = ppv = frac_pos, which is worse than 0.5 if frac_pos<0.5
    # So, because the f1 score is used if frac_pos is small (typically <0.1)
    # the best is to assume that base_f1=0.5
        base_f1 = 0.5
    # For the multiclass case, this is not possible (though it does not make much sense to
    # use f1 for multiclass problems), so the best would be to assign values at random to get 
    # tpr=ppv=frac_pos, where frac_pos=1/label_num
    else:
        base_f1=1./label_num
    score = (f1 - base_f1) / sp.maximum(eps, (1 - base_f1))
    return score
classification_metrics.py 文件源码 项目:AutoML-Challenge 作者: postech-mlg-exbrain 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def pac_metric(solution, prediction, task=BINARY_CLASSIFICATION):
    """
    Probabilistic Accuracy based on log_loss metric.

    We assume the solution is in {0, 1} and prediction in [0, 1].
    Otherwise, run normalize_array.
    :param solution:
    :param prediction:
    :param task:
    :return:
    """

    debug_flag = False
    sample_num, label_num = solution.shape
    if label_num == 1:
        task = BINARY_CLASSIFICATION
    eps = 1e-15
    the_log_loss = log_loss(solution, prediction, task)
    # Compute the base log loss (using the prior probabilities)
    pos_num = 1. * sum(solution)  # float conversion!
    frac_pos = pos_num / sample_num  # prior proba of positive class
    the_base_log_loss = prior_log_loss(frac_pos, task)
    # Alternative computation of the same thing (slower)
    # Should always return the same thing except in the multi-label case
    # For which the analytic solution makes more sense
    if debug_flag:
        base_prediction = np.empty(prediction.shape)
        for k in range(sample_num):
            base_prediction[k, :] = frac_pos
        base_log_loss = log_loss(solution, base_prediction, task)
        diff = np.array(abs(the_base_log_loss - base_log_loss))
        if len(diff.shape) > 0:
            diff = max(diff)
        if (diff) > 1e-10:
            print('Arrggh {} != {}'.format(the_base_log_loss, base_log_loss))
    # Exponentiate to turn into an accuracy-like score.
    # In the multi-label case, we need to average AFTER taking the exp
    # because it is an NL operation
    pac = np.mean(np.exp(-the_log_loss))
    base_pac = np.mean(np.exp(-the_base_log_loss))
    # Normalize: 0 for random, 1 for perfect
    score = (pac - base_pac) / sp.maximum(eps, (1 - base_pac))
    return score
classification_metrics.py 文件源码 项目:AutoML-Challenge 作者: postech-mlg-exbrain 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def f1_metric(solution, prediction, task=BINARY_CLASSIFICATION):
    """
    Compute the normalized f1 measure.

    The binarization differs
    for the multi-label and multi-class case.
    A non-weighted average over classes is taken.
    The score is normalized.
    :param solution:
    :param prediction:
    :param task:
    :return:
    """

    label_num = solution.shape[1]
    score = np.zeros(label_num)
    bin_prediction = binarize_predictions(prediction, task)
    [tn, fp, tp, fn] = acc_stat(solution, bin_prediction)
    # Bounding to avoid division by 0
    eps = 1e-15
    true_pos_num = sp.maximum(eps, tp + fn)
    found_pos_num = sp.maximum(eps, tp + fp)
    tp = sp.maximum(eps, tp)
    tpr = tp / true_pos_num  # true positive rate (recall)
    ppv = tp / found_pos_num  # positive predictive value (precision)
    arithmetic_mean = 0.5 * sp.maximum(eps, tpr + ppv)
    # Harmonic mean:
    f1 = tpr * ppv / arithmetic_mean
    # Average over all classes
    f1 = np.mean(f1)
    # Normalize: 0 for random, 1 for perfect
    if (task != MULTICLASS_CLASSIFICATION) or (label_num == 1):
        # How to choose the "base_f1"?
        # For the binary/multilabel classification case, one may want to predict all 1.
        # In that case tpr = 1 and ppv = frac_pos. f1 = 2 * frac_pos / (1+frac_pos)
        #     frac_pos = mvmean(solution.ravel())
        #     base_f1 = 2 * frac_pos / (1+frac_pos)
        # or predict random values with probability 0.5, in which case
        #     base_f1 = 0.5
        # the first solution is better only if frac_pos > 1/3.
        # The solution in which we predict according to the class prior frac_pos gives
        # f1 = tpr = ppv = frac_pos, which is worse than 0.5 if frac_pos<0.5
        # So, because the f1 score is used if frac_pos is small (typically <0.1)
        # the best is to assume that base_f1=0.5
        base_f1 = 0.5
    # For the multiclass case, this is not possible (though it does not make much sense to
    # use f1 for multiclass problems), so the best would be to assign values at random to get
    # tpr=ppv=frac_pos, where frac_pos=1/label_num
    else:
        base_f1 = 1. / label_num
    score = (f1 - base_f1) / sp.maximum(eps, (1 - base_f1))
    return score


问题


面经


文章

微信
公众号

扫码关注公众号