def test_rank_methods_frame(self):
tm.skip_if_no_package('scipy', '0.13', 'scipy.stats.rankdata')
import scipy
from scipy.stats import rankdata
xs = np.random.randint(0, 21, (100, 26))
xs = (xs - 10.0) / 10.0
cols = [chr(ord('z') - i) for i in range(xs.shape[1])]
for vals in [xs, xs + 1e6, xs * 1e-6]:
df = DataFrame(vals, columns=cols)
for ax in [0, 1]:
for m in ['average', 'min', 'max', 'first', 'dense']:
result = df.rank(axis=ax, method=m)
sprank = np.apply_along_axis(
rankdata, ax, vals,
m if m != 'first' else 'ordinal')
sprank = sprank.astype(np.float64)
expected = DataFrame(sprank, columns=cols)
if LooseVersion(scipy.__version__) >= '0.17.0':
expected = expected.astype('float64')
tm.assert_frame_equal(result, expected)
python类__version__()的实例源码
test_stats.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def meta_data(self):
import time
import sys
metadata = {}
date = time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(time.time()))
metadata['date'] = date
metadata['Version'] = self.version
metadata['Python Version'] = sys.version
metadata['Numpy Version'] = np.__version__
metadata['Scipy Version '] = scipy.__version__
metadata['psyFunction'] = self.psyfun
metadata['thresholdGrid'] = self.threshold.tolist()
metadata['thresholdPrior'] = self.thresholdPrior
metadata['slopeGrid'] = self.slope.tolist()
metadata['slopePrior'] = self.slopePrior
metadata['gammaGrid'] = self.guessRate.tolist()
metadata['gammaPrior'] = self.guessPrior
metadata['lapseGrid'] = self.lapseRate.tolist()
metadata['lapsePrior'] = self.lapsePrior
return metadata
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def test_scipy(pyi_builder):
pyi_builder.test_source(
"""
from distutils.version import LooseVersion
# Test top-level SciPy importability.
import scipy
from scipy import *
# Test hooked SciPy modules.
import scipy.io.matlab
import scipy.sparse.csgraph
# Test problematic SciPy modules.
import scipy.linalg
import scipy.signal
# SciPy >= 0.16 privatized the previously public "scipy.lib" package as
# "scipy._lib". Since this package is problematic, test its
# importability regardless of SciPy version.
if LooseVersion(scipy.__version__) >= LooseVersion('0.16.0'):
import scipy._lib
else:
import scipy.lib
""")
test_stats.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 40
收藏 0
点赞 0
评论 0
def test_rank_methods_series(self):
tm.skip_if_no_package('scipy', '0.13', 'scipy.stats.rankdata')
import scipy
from scipy.stats import rankdata
xs = np.random.randn(9)
xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates
np.random.shuffle(xs)
index = [chr(ord('a') + i) for i in range(len(xs))]
for vals in [xs, xs + 1e6, xs * 1e-6]:
ts = Series(vals, index=index)
for m in ['average', 'min', 'max', 'first', 'dense']:
result = ts.rank(method=m)
sprank = rankdata(vals, m if m != 'first' else 'ordinal')
expected = Series(sprank, index=index)
if LooseVersion(scipy.__version__) >= '0.17.0':
expected = expected.astype('float64')
tm.assert_series_equal(result, expected)
testing.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def skip_if_no_ne(engine='numexpr'):
import nose
_USE_NUMEXPR = pd.computation.expressions._USE_NUMEXPR
if engine == 'numexpr':
try:
import numexpr as ne
except ImportError:
raise nose.SkipTest("numexpr not installed")
if not _USE_NUMEXPR:
raise nose.SkipTest("numexpr disabled")
if ne.__version__ < LooseVersion('2.0'):
raise nose.SkipTest("numexpr version too low: "
"%s" % ne.__version__)
plotting.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def _plot(cls, ax, y, style=None, bw_method=None, ind=None,
column_num=None, stacking_id=None, **kwds):
from scipy.stats import gaussian_kde
from scipy import __version__ as spv
y = remove_na(y)
if LooseVersion(spv) >= '0.11.0':
gkde = gaussian_kde(y, bw_method=bw_method)
else:
gkde = gaussian_kde(y)
if bw_method is not None:
msg = ('bw_method was added in Scipy 0.11.0.' +
' Scipy version in use is %s.' % spv)
warnings.warn(msg)
y = gkde.evaluate(ind)
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
return lines
nosetester.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 55
收藏 0
点赞 0
评论 0
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def get_scipy_status():
"""
Return a dictionary containing a boolean specifying whether SciPy
is up-to-date, along with the version string (empty string if
not installed).
"""
scipy_status = {}
try:
import scipy
scipy_version = scipy.__version__
scipy_status['up_to_date'] = parse_version(
scipy_version) >= parse_version(scipy_min_version)
scipy_status['version'] = scipy_version
except ImportError:
scipy_status['up_to_date'] = False
scipy_status['version'] = ""
return scipy_status
def get_numpy_status():
"""
Return a dictionary containing a boolean specifying whether NumPy
is up-to-date, along with the version string (empty string if
not installed).
"""
numpy_status = {}
try:
import numpy
numpy_version = numpy.__version__
numpy_status['up_to_date'] = parse_version(
numpy_version) >= parse_version(numpy_min_version)
numpy_status['version'] = numpy_version
except ImportError:
numpy_status['up_to_date'] = False
numpy_status['version'] = ""
return numpy_status
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def test_scipy(pyi_builder):
pyi_builder.test_source(
"""
from distutils.version import LooseVersion
# Test top-level SciPy importability.
import scipy
from scipy import *
# Test hooked SciPy modules.
import scipy.io.matlab
import scipy.sparse.csgraph
# Test problematic SciPy modules.
import scipy.linalg
import scipy.signal
# SciPy >= 0.16 privatized the previously public "scipy.lib" package as
# "scipy._lib". Since this package is problematic, test its
# importability regardless of SciPy version.
if LooseVersion(scipy.__version__) >= LooseVersion('0.16.0'):
import scipy._lib
else:
import scipy.lib
""")
def get_scipy_status():
"""
Returns a dictionary containing a boolean specifying whether SciPy
is up-to-date, along with the version string (empty string if
not installed).
"""
scipy_status = {}
try:
import scipy
scipy_version = scipy.__version__
scipy_status['up_to_date'] = parse_version(
scipy_version) >= parse_version(scipy_min_version)
scipy_status['version'] = scipy_version
except ImportError:
scipy_status['up_to_date'] = False
scipy_status['version'] = ""
return scipy_status
def get_numpy_status():
"""
Returns a dictionary containing a boolean specifying whether NumPy
is up-to-date, along with the version string (empty string if
not installed).
"""
numpy_status = {}
try:
import numpy
numpy_version = numpy.__version__
numpy_status['up_to_date'] = parse_version(
numpy_version) >= parse_version(numpy_min_version)
numpy_status['version'] = numpy_version
except ImportError:
numpy_status['up_to_date'] = False
numpy_status['version'] = ""
return numpy_status
def _show_system_info(self):
nose = import_nose()
import numpy
print("NumPy version %s" % numpy.__version__)
relaxed_strides = numpy.ones((10, 1), order="C").flags.f_contiguous
print("NumPy relaxed strides checking option:", relaxed_strides)
npdir = os.path.dirname(numpy.__file__)
print("NumPy is installed in %s" % npdir)
if 'scipy' in self.package_name:
import scipy
print("SciPy version %s" % scipy.__version__)
spdir = os.path.dirname(scipy.__file__)
print("SciPy is installed in %s" % spdir)
pyversion = sys.version.replace('\n', '')
print("Python version %s" % pyversion)
print("nose version %d.%d.%d" % nose.__versioninfo__)
def get_pandas_status():
try:
import pandas as pd
return _check_version(pd.__version__, pandas_min_version)
except ImportError:
traceback.print_exc()
return default_status
def get_sklearn_status():
try:
import sklearn as sk
return _check_version(sk.__version__, sklearn_min_version)
except ImportError:
traceback.print_exc()
return default_status
def get_numpy_status():
try:
import numpy as np
return _check_version(np.__version__, numpy_min_version)
except ImportError:
traceback.print_exc()
return default_status
def get_scipy_status():
try:
import scipy as sc
return _check_version(sc.__version__, scipy_min_version)
except ImportError:
traceback.print_exc()
return default_status
def get_h2o_status():
try:
import h2o
return _check_version(h2o.__version__, h2o_min_version)
except ImportError:
traceback.print_exc()
return default_status
def _numpy_tester():
if hasattr(np, "__version__") and ".dev0" in np.__version__:
mode = "develop"
else:
mode = "release"
return NoseTester(raise_warnings=mode, depth=1)
def _numpy_tester():
if hasattr(np, "__version__") and ".dev0" in np.__version__:
mode = "develop"
else:
mode = "release"
return NoseTester(raise_warnings=mode, depth=1)
def check_dependencies():
try:
import nose
logger.debug("\tNose: %s\n" % str(nose.__version__))
except ImportError:
raise ImportError("Nose cannot be imported. Are you sure it's "
"installed?")
try:
import networkx
logger.debug("\tnetworkx: %s\n" % str(networkx.__version__))
except ImportError:
raise ImportError("Networkx cannot be imported. Are you sure it's "
"installed?")
try:
import pymongo
logger.debug("\tpymongo: %s\n" % str(pymongo.version))
from bson.objectid import ObjectId
except ImportError:
raise ImportError("Pymongo cannot be imported. Are you sure it's"
" installed?")
try:
import numpy
logger.debug("\tnumpy: %s" % str(numpy.__version__))
except ImportError:
raise ImportError("Numpy cannot be imported. Are you sure that it's"
" installed?")
try:
import scipy
logger.debug("\tscipy: %s" % str(scipy.__version__))
except ImportError:
raise ImportError("Scipy cannot be imported. Are you sure that it's"
" installed?")
def check_dependencies():
try:
import nose
logger.debug("\tNose: %s\n" % str(nose.__version__))
except ImportError:
raise ImportError("Nose cannot be imported. Are you sure it's "
"installed?")
try:
import networkx
logger.debug("\tnetworkx: %s\n" % str(networkx.__version__))
except ImportError:
raise ImportError("Networkx cannot be imported. Are you sure it's "
"installed?")
try:
import pymongo
logger.debug("\tpymongo: %s\n" % str(pymongo.version))
from bson.objectid import ObjectId
except ImportError:
raise ImportError("Pymongo cannot be imported. Are you sure it's"
" installed?")
try:
import numpy
logger.debug("\tnumpy: %s" % str(numpy.__version__))
except ImportError:
raise ImportError("Numpy cannot be imported. Are you sure that it's"
" installed?")
try:
import scipy
logger.debug("\tscipy: %s" % str(scipy.__version__))
except ImportError:
raise ImportError("Scipy cannot be imported. Are you sure that it's"
" installed?")
def check_dependencies():
try:
import nose
logger.debug("\tNose: %s\n" % str(nose.__version__))
except ImportError:
raise ImportError("Nose cannot be imported. Are you sure it's "
"installed?")
try:
import networkx
logger.debug("\tnetworkx: %s\n" % str(networkx.__version__))
except ImportError:
raise ImportError("Networkx cannot be imported. Are you sure it's "
"installed?")
try:
import pymongo
logger.debug("\tpymongo: %s\n" % str(pymongo.version))
from bson.objectid import ObjectId
except ImportError:
raise ImportError("Pymongo cannot be imported. Are you sure it's"
" installed?")
try:
import numpy
logger.debug("\tnumpy: %s" % str(numpy.__version__))
except ImportError:
raise ImportError("Numpy cannot be imported. Are you sure that it's"
" installed?")
try:
import scipy
logger.debug("\tscipy: %s" % str(scipy.__version__))
except ImportError:
raise ImportError("Scipy cannot be imported. Are you sure that it's"
" installed?")
def _check_modules():
"""Checks whether all dependencies are installed"""
try:
import numpy
if numpy.__version__ < "1.6.0":
logger.warning("WARNING: You are using a numpy %s < 1.6.0. This "
"might not work", numpy.__version__)
except:
raise ImportError("Numpy cannot be imported. Are you sure that it's installed?")
try:
import scipy
if scipy.__version__ < "0.12.0":
logger.warning("WARNING: You are using a scipy %s < 0.12.0. "
"This might not work", scipy.__version__)
except:
raise ImportError("Scipy cannot be imported. Are you sure that it's installed?")
try:
import theano
logger.debug("\tTheano: %s" % str(theano.__version__))
except ImportError:
logger.warning("Theano not found. You might need this to run some "
"more complex benchmarks!")
if 'cuda' not in os.environ['PATH']:
logger.warning("CUDA not in $PATH")
test_analytics.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 45
收藏 0
点赞 0
评论 0
def test_corr_rank(self):
tm._skip_if_no_scipy()
import scipy
import scipy.stats as stats
# kendall and spearman
A = tm.makeTimeSeries()
B = tm.makeTimeSeries()
A[-5:] = A[:5]
result = A.corr(B, method='kendall')
expected = stats.kendalltau(A, B)[0]
self.assertAlmostEqual(result, expected)
result = A.corr(B, method='spearman')
expected = stats.spearmanr(A, B)[0]
self.assertAlmostEqual(result, expected)
# these methods got rewritten in 0.8
if scipy.__version__ < LooseVersion('0.9'):
raise nose.SkipTest("skipping corr rank because of scipy version "
"{0}".format(scipy.__version__))
# results from R
A = Series(
[-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -
0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606])
B = Series(
[-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292,
1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375])
kexp = 0.4319297
sexp = 0.5853767
self.assertAlmostEqual(A.corr(B, method='kendall'), kexp)
self.assertAlmostEqual(A.corr(B, method='spearman'), sexp)