python类minimum()的实例源码

net.py 文件源码 项目:GitImpact 作者: ludovicdmt 项目源码 文件源码 阅读 77 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
np_utils.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
    res *= -1.0/len(y)
    return res
beacon_analysis.py 文件源码 项目:digital_rf 作者: MITHaystack 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def outlier_removed_fit(m, w = None, n_iter=10, polyord=7):
    """
    Remove outliers using fited data.

    Args:
        m (:obj:`numpy array`): Phase curve.
        n_iter (:obj:'int'): Number of iteration outlier removal
        polyorder (:obj:'int'): Order of polynomial used.

    Returns:
        fit (:obj:'numpy array'): Curve with outliers removed
    """
    if w is None:
        w = sp.ones_like(m)
    W = sp.diag(sp.sqrt(w))
    m2 = sp.copy(m)
    tv = sp.linspace(-1, 1, num=len(m))
    A = sp.zeros([len(m), polyord])
    for j in range(polyord):
        A[:, j] = tv**(float(j))
    A2 = sp.dot(W,A)
    m2w = sp.dot(m2,W)
    fit = None
    for i in range(n_iter):
        xhat = sp.linalg.lstsq(A2, m2w)[0]
        fit = sp.dot(A, xhat)
        # use gradient for central finite differences which keeps order
        resid = sp.gradient(fit - m2)
        std = sp.std(resid)
        bidx = sp.where(sp.absolute(resid) > 2.0*std)[0]
        for bi in bidx:
            A2[bi,:]=0.0
            m2[bi]=0.0
            m2w[bi]=0.0
    if debug_plot:
        plt.plot(m2,label="outlier removed")
        plt.plot(m,label="original")
        plt.plot(fit,label="fit")
        plt.legend()
        plt.ylim([sp.minimum(fit)-std*3.0,sp.maximum(fit)+std*3.0])
        plt.show()
    return(fit)
BackgroundSubtraction.py 文件源码 项目:nimo 作者: wolfram2012 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def _computeBGDiff(self):
        self._flow.update( self._imageBuffer.getLast() )

        n = len(self._imageBuffer)        
        prev_im = self._imageBuffer[0]
        forward = None
        for i in range(0,n/2):
            if forward == None:
                forward = self._imageBuffer[i].to_next
            else:
                forward = forward * self._imageBuffer[i].to_next

        w,h = size = prev_im.size
        mask = cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
        cv.Set(mask,0)
        interior = cv.GetSubRect(mask, pv.Rect(2,2,w-4,h-4).asOpenCV()) 
        cv.Set(interior,255)
        mask = pv.Image(mask)

        prev_im = forward(prev_im)
        prev_mask = forward(mask)


        next_im = self._imageBuffer[n-1]
        back = None
        for i in range(n-1,n/2,-1):
            if back == None:
                back = self._imageBuffer[i].to_prev
            else:
                back = back * self._imageBuffer[i].to_prev

        next_im = back(next_im)
        next_mask = back(mask)

        curr_im = self._imageBuffer[n/2]


        prevImg = prev_im.asMatrix2D()
        curImg  = curr_im.asMatrix2D()
        nextImg = next_im.asMatrix2D()
        prevMask = prev_mask.asMatrix2D()
        nextMask = next_mask.asMatrix2D()

        # Compute transformed images
        delta1 = sp.absolute(curImg - prevImg)   #frame diff 1
        delta2 = sp.absolute(nextImg - curImg)   #frame diff 2

        delta1 = sp.minimum(delta1,prevMask)
        delta2 = sp.minimum(delta2,nextMask)

        #use element-wise minimum of the two difference images, which is what
        # gets compared to threshold to yield foreground mask
        return sp.minimum(delta1, delta2)


问题


面经


文章

微信
公众号

扫码关注公众号