python类minimum()的实例源码

main.py 文件源码 项目:house-price-map 作者: andyljones 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def with_walking(time_arr, mins_per_square=1.3, transfer_constant=5):
    arr = time_arr.copy()
    cross_footprint = sp.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]).astype(bool)
    diag_footprint = sp.array([[1, 0, 1],[0, 1, 0], [1, 0, 1]]).astype(bool)
    arr[sp.isnan(arr)] = sp.inf
    for i in range(60):
        cross_arr = sp.ndimage.minimum_filter(arr, footprint=cross_footprint)
        cross_arr[sp.isnan(cross_arr)] = sp.inf
        cross_changes = (cross_arr != arr)
        cross_arr[cross_changes] += 1*mins_per_square

        diag_arr = sp.ndimage.minimum_filter(arr, footprint=diag_footprint)
        diag_arr[sp.isnan(diag_arr)] = sp.inf
        diag_changes = (diag_arr != arr)
        diag_arr[diag_changes] += 1.4*mins_per_square

        arr = sp.minimum(cross_arr, diag_arr)

    arr[sp.isinf(arr)] = sp.nan

    return arr + transfer_constant
libscores.py 文件源码 项目:AutoML5 作者: djajetic 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def log_loss(solution, prediction, task = 'binary.classification'):
    ''' Log loss for binary and multiclass. '''
    [sample_num, label_num] = solution.shape
    eps = 1e-15

    pred = np.copy(prediction) # beware: changes in prediction occur through this
    sol = np.copy(solution)
    if (task == 'multiclass.classification') and (label_num>1):
        # Make sure the lines add up to one for multi-class classification
        norma = np.sum(prediction, axis=1)
        for k in range(sample_num):
            pred[k,:] /= sp.maximum (norma[k], eps) 
        # Make sure there is a single label active per line for multi-class classification
        sol = binarize_predictions(solution, task='multiclass.classification')
        # For the base prediction, this solution is ridiculous in the multi-label case

    # Bounding of predictions to avoid log(0),1/0,...
    pred = sp.minimum (1-eps, sp.maximum (eps, pred))
    # Compute the log loss    
    pos_class_log_loss = - mvmean(sol*np.log(pred), axis=0)
    if (task != 'multiclass.classification') or (label_num==1):
        # The multi-label case is a bunch of binary problems.
        # The second class is the negative class for each column.
        neg_class_log_loss = - mvmean((1-sol)*np.log(1-pred), axis=0)
        log_loss = pos_class_log_loss + neg_class_log_loss
        # Each column is an independent problem, so we average.
        # The probabilities in one line do not add up to one.
        # log_loss = mvmean(log_loss) 
        # print('binary {}'.format(log_loss))
        # In the multilabel case, the right thing i to AVERAGE not sum
        # We return all the scores so we can normalize correctly later on
    else:
        # For the multiclass case the probabilities in one line add up one.
        log_loss = pos_class_log_loss
        # We sum the contributions of the columns.
        log_loss = np.sum(log_loss) 
        #print('multiclass {}'.format(log_loss))
    return log_loss
np_utils.py 文件源码 项目:CopyNet 作者: MultiPath 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
libscores.py 文件源码 项目:AutoML4 作者: djajetic 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def log_loss(solution, prediction, task = 'binary.classification'):
    ''' Log loss for binary and multiclass. '''
    [sample_num, label_num] = solution.shape
    eps = 1e-15

    pred = np.copy(prediction) # beware: changes in prediction occur through this
    sol = np.copy(solution)
    if (task == 'multiclass.classification') and (label_num>1):
        # Make sure the lines add up to one for multi-class classification
        norma = np.sum(prediction, axis=1)
        for k in range(sample_num):
            pred[k,:] /= sp.maximum (norma[k], eps) 
        # Make sure there is a single label active per line for multi-class classification
        sol = binarize_predictions(solution, task='multiclass.classification')
        # For the base prediction, this solution is ridiculous in the multi-label case

    # Bounding of predictions to avoid log(0),1/0,...
    pred = sp.minimum (1-eps, sp.maximum (eps, pred))
    # Compute the log loss    
    pos_class_log_loss = - mvmean(sol*np.log(pred), axis=0)
    if (task != 'multiclass.classification') or (label_num==1):
        # The multi-label case is a bunch of binary problems.
        # The second class is the negative class for each column.
        neg_class_log_loss = - mvmean((1-sol)*np.log(1-pred), axis=0)
        log_loss = pos_class_log_loss + neg_class_log_loss
        # Each column is an independent problem, so we average.
        # The probabilities in one line do not add up to one.
        # log_loss = mvmean(log_loss) 
        # print('binary {}'.format(log_loss))
        # In the multilabel case, the right thing i to AVERAGE not sum
        # We return all the scores so we can normalize correctly later on
    else:
        # For the multiclass case the probabilities in one line add up one.
        log_loss = pos_class_log_loss
        # We sum the contributions of the columns.
        log_loss = np.sum(log_loss) 
        #print('multiclass {}'.format(log_loss))
    return log_loss
beacon_analysis.py 文件源码 项目:digital_rf 作者: MITHaystack 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def open_file(maindir):
    """
        Creates the digital RF reading object.

        Args:
            maindir (:obj:'str'): The directory where the data is located.

        Returns:
            drfObj (obj:"DigitalRFReader"): Digital RF Reader object.
            chandict (obj:"dict"): Dictionary that holds info for the channels.
            start_indx (obj:'long'): Start index in samples.
            end_indx (obj:'long'): End index in samples.
    """
    mainpath = os.path.expanduser(maindir)
    drfObj = drf.DigitalRFReader(mainpath)
    chans = drfObj.get_channels()

    chandict={}

    start_indx, end_indx=[0, sp.inf]
    # Get channel info
    for ichan in chans:
        curdict = {}

        curdict['sind'], curdict['eind'] = drfObj.get_bounds(ichan)
        # determine the read boundrys assuming the sampling is the same.
        start_indx = sp.maximum(curdict['sind'], start_indx)
        end_indx = sp.minimum(curdict['eind'], end_indx)

        dmetadict = drfObj.read_metadata(start_indx, end_indx, ichan)
        dmetakeys = dmetadict.keys()

        curdict['sps'] = dmetadict[dmetakeys[0]]['samples_per_second']
        curdict['fo'] = dmetadict[dmetakeys[0]]['center_frequencies'].ravel()[0]
        chandict[ichan] = curdict

    return (drfObj, chandict, start_indx, end_indx)
np_utils.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
libscores.py 文件源码 项目:automl_gpu 作者: abhishekkrthakur 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def log_loss(solution, prediction, task = 'binary.classification'):
    ''' Log loss for binary and multiclass. '''
    [sample_num, label_num] = solution.shape
    eps = 1e-15

    pred = np.copy(prediction) # beware: changes in prediction occur through this
    sol = np.copy(solution)
    if (task == 'multiclass.classification') and (label_num>1):
        # Make sure the lines add up to one for multi-class classification
        norma = np.sum(prediction, axis=1)
        for k in range(sample_num):
            pred[k,:] /= sp.maximum (norma[k], eps) 
        # Make sure there is a single label active per line for multi-class classification
        sol = binarize_predictions(solution, task='multiclass.classification')
        # For the base prediction, this solution is ridiculous in the multi-label case

    # Bounding of predictions to avoid log(0),1/0,...
    pred = sp.minimum (1-eps, sp.maximum (eps, pred))
    # Compute the log loss    
    pos_class_log_loss = - mvmean(sol*np.log(pred), axis=0)
    if (task != 'multiclass.classification') or (label_num==1):
        # The multi-label case is a bunch of binary problems.
        # The second class is the negative class for each column.
        neg_class_log_loss = - mvmean((1-sol)*np.log(1-pred), axis=0)
        log_loss = pos_class_log_loss + neg_class_log_loss
        # Each column is an independent problem, so we average.
        # The probabilities in one line do not add up to one.
        # log_loss = mvmean(log_loss) 
        # print('binary {}'.format(log_loss))
        # In the multilabel case, the right thing i to AVERAGE not sum
        # We return all the scores so we can normalize correctly later on
    else:
        # For the multiclass case the probabilities in one line add up one.
        log_loss = pos_class_log_loss
        # We sum the contributions of the columns.
        log_loss = np.sum(log_loss) 
        #print('multiclass {}'.format(log_loss))
    return log_loss
BackgroundSubtraction.py 文件源码 项目:nimo 作者: wolfram2012 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def _computeBGDiff(self):
        prevImg = self._imageBuffer[0].asMatrix2D()
        curImg = self._imageBuffer.getMiddle().asMatrix2D()
        nextImg = self._imageBuffer[-1].asMatrix2D()

        delta1 = sp.absolute(curImg - prevImg)   #frame diff 1
        delta2 = sp.absolute(nextImg - curImg)   #frame diff 2

        #use element-wise minimum of the two difference images, which is what
        # gets compared to threshold to yield foreground mask
        return sp.minimum(delta1, delta2)
final.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def loglossl(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
utils.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def my_logloss(act, pred):
    epsilon = 1e-15
    pred = K.maximum(epsilon, pred)
    pred = K.minimum(1 - epsilon, pred)
    ll = K.sum(act * K.log(pred) + (1 - act) * K.log(1 - pred))
    ll = ll * -1.0 / K.shape(act)[0]

    return ll
utils.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 47 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    '''
    ????????
    :param act: 
    :param pred: 
    :return: 
    '''
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1 - epsilon, pred)
    ll = sum(act * sp.log(pred) + sp.subtract(1, act) * sp.log(sp.subtract(1, pred)))
    ll = ll * -1.0 / len(act)
    return ll
np_utils.py 文件源码 项目:seq2seq-keyphrase 作者: memray 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
util.py 文件源码 项目:AutoML-Challenge 作者: postech-mlg-exbrain 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def log_loss(solution, prediction, task=BINARY_CLASSIFICATION):
    """Log loss for binary and multiclass."""
    [sample_num, label_num] = solution.shape
    eps = 1e-15

    pred = np.copy(prediction)  # beware: changes in prediction occur through this
    sol = np.copy(solution)
    if (task == MULTICLASS_CLASSIFICATION) and (label_num > 1):
        # Make sure the lines add up to one for multi-class classification
        norma = np.sum(prediction, axis=1)
        for k in range(sample_num):
            pred[k, :] /= sp.maximum(norma[k], eps)
        # Make sure there is a single label active per line for multi-class
        # classification
        sol = binarize_predictions(solution, task=MULTICLASS_CLASSIFICATION)
        # For the base prediction, this solution is ridiculous in the
        # multi-label case

        # Bounding of predictions to avoid log(0),1/0,...
    pred = sp.minimum(1 - eps, sp.maximum(eps, pred))
    # Compute the log loss
    pos_class_log_loss = -np.mean(sol * np.log(pred), axis=0)
    if (task != MULTICLASS_CLASSIFICATION) or (label_num == 1):
        # The multi-label case is a bunch of binary problems.
        # The second class is the negative class for each column.
        neg_class_log_loss = -np.mean((1 - sol) * np.log(1 - pred), axis=0)
        log_loss = pos_class_log_loss + neg_class_log_loss
        # Each column is an independent problem, so we average.
        # The probabilities in one line do not add up to one.
        # log_loss = mvmean(log_loss)
        # print('binary {}'.format(log_loss))
        # In the multilabel case, the right thing i to AVERAGE not sum
        # We return all the scores so we can normalize correctly later on
    else:
        # For the multiclass case the probabilities in one line add up one.
        log_loss = pos_class_log_loss
        # We sum the contributions of the columns.
        log_loss = np.sum(log_loss)
        # print('multiclass {}'.format(log_loss))
    return log_loss
np_utils.py 文件源码 项目:keraflow 作者: ipod825 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
XGBoostTest.py 文件源码 项目:Tencent2017_Final_Coda_Allegro 作者: BladeCoda 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def logloss(act, pred):
  epsilon = 1e-15
  pred = sp.maximum(epsilon, pred)
  pred = sp.minimum(1-epsilon, pred)
  ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
  ll = ll * -1.0/len(act)
  return ll
LightGBMExam.py 文件源码 项目:Tencent2017_Final_Coda_Allegro 作者: BladeCoda 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def logloss(act, pred):
  epsilon = 1e-15
  pred = sp.maximum(epsilon, pred)
  pred = sp.minimum(1-epsilon, pred)
  ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
  ll = ll * -1.0/len(act)
  return ll
np_utils.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
doFeats_1.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
train_cv.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
doFeats_2.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
util.py 文件源码 项目:Cascade-CNN-Face-Detection 作者: gogolgrind 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def nms(dets,proba, T):

        dets = dets.astype("float")
        if len(dets) == 0:
            return []

        x1 = dets[:, 0]
        y1 = dets[:, 1]
        x2 = dets[:, 2]
        y2 = dets[:, 3]
        scores = proba

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]

        keep = []
        while order.size > 0:
            i = order[0]
            keep.append(i)
            xx1 = sp.maximum(x1[i], x1[order[1:]])
            yy1 = sp.maximum(y1[i], y1[order[1:]])
            xx2 = sp.minimum(x2[i], x2[order[1:]])
            yy2 = sp.minimum(y2[i], y2[order[1:]])

            w = sp.maximum(0.0, xx2 - xx1 + 1)
            h = sp.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = sp.where(ovr <= T)[0]
            order = order[inds + 1]

        return keep
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def self_eval(pred,train_data):
    '''
    :pred 
    :train_data ?? labels
    '''
    try:
        labels=train_data.get_label()
    except:
        labels=train_data
    epsilon = 1e-15
    pred = np.maximum(epsilon,  pred)
    pred = np.minimum(1-epsilon,pred)
    ll = sum(labels*np.log(pred) + (1 - labels)*np.log(1 - pred))
    ll = ll * (-1.0)/len(labels)
    return 'log loss', ll, False
np_utils.py 文件源码 项目:CopyNet 作者: MingyuanXie 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
B_2_find_RF_param.py 文件源码 项目:tencent_social_algo 作者: Folieshell 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def logloss(act, pred):
  epsilon = 1e-15
  pred = sp.maximum(epsilon, pred)
  pred = sp.minimum(1-epsilon, pred)
  ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
  ll = ll * -1.0/len(act)
  return ll
B_3_grid_search.py 文件源码 项目:tencent_social_algo 作者: Folieshell 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
np_utils.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:InnerOuterRNN 作者: Chemoinformatics 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res


问题


面经


文章

微信
公众号

扫码关注公众号