python类zeros()的实例源码

recipe-578834.py 文件源码 项目:code 作者: ActiveState 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def data(self, size=20):
        """Create some fake data in a dataframe"""
        numpy.random.seed(0)
        random.seed(0)
        x = scipy.rand(size)
        M = scipy.zeros([size,size])
        for i in range(size):
            for j in range(size): M[i,j] = abs(x[i] - x[j])
        df = pandas.DataFrame(M, index=[names.get_last_name() for _ in range(size)],
                                 columns=[names.get_first_name() for _ in range(size)])
        df['Mary']['Day'] = 1.5
        df['Issac']['Day'] = 1.0
        return df
gmm_ridge.py 文件源码 项目:HistoricalMap 作者: lennepkade 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predict(tau,model,xT,yT):
    err = sp.zeros(tau.size)
    for j,t in enumerate(tau):
        yp = model.predict(xT,tau=t)[0]
        eq = sp.where(yp.ravel()==yT.ravel())[0]
        err[j] = eq.size*100.0/yT.size
    return err
gmm_ridge.py 文件源码 项目:HistoricalMap 作者: lennepkade 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def cross_validation(self,x,y,tau,v=5):
        ''' 
        Function that computes the cross validation accuracy for the value tau of the regularization
        Input:
            x : the training samples
            y : the labels
            tau : a range of values to be tested
            v : the number of fold
        Output:
            err : the estimated error with cross validation for all tau's value
        '''
        ## Initialization
        ns = x.shape[0]     # Number of samples
        np = tau.size       # Number of parameters to test
        cv = CV()           # Initialization of the indices for the cross validation
        cv.split_data_class(y)
        err = sp.zeros(np)  # Initialization of the errors

        ## Create GMM model for each fold
        model_cv = []
        for i in range(v):
            model_cv.append(GMMR())
            model_cv[i].learn(x[cv.it[i],:], y[cv.it[i]])

        ## Initialization of the pool of processes
        pool = mp.Pool()
        processes = [pool.apply_async(predict,args=(tau,model_cv[i],x[cv.iT[i],:],y[cv.iT[i]])) for i in range(v)]
        pool.close()
        pool.join()
        for p in processes:
            err += p.get()
        err /= v

        ## Free memory        
        for model in model_cv:
            del model
        elf
        del processes,pool,model_cv

        return tau[err.argmax()],err
ImageBuffer.py 文件源码 项目:nimo 作者: wolfram2012 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def asStackBW(self, size=None):
        '''
        Outputs an image buffer as a 3D numpy array ("stack") of grayscale images.
        @param size: A tuple (w,h) indicating the output size of each frame.
        If None, then the size of the first image in the buffer will be used.
        @return: a 3D array (stack) of the gray scale version of the images
        in the buffer. The dimensions of the stack are (N,w,h), where N is
        the number of images (buffer size), w and h are the width and height
        of each image.        
        '''
        if size==None:
            img0 = self[0]        
            (w,h) = img0.size
        else:
            (w,h) = size

        f = self.getCount()
        stack = sp.zeros((f,w,h))
        for i,img in enumerate(self._data):
            #if img is not (w,h) in size, then resize first
            sz = img.size
            if (w,h) != sz:
                img2 = img.resize((w,h))
                mat = img2.asMatrix2D()
            else:
                mat = img.asMatrix2D()
            stack[i,:,:] = mat

        return stack
cvlognet.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def auc_mat(y, prob, weights = None):
    if weights == None or len(weights) == 0:
        weights = scipy.ones([y.shape[0], 1])
    wweights = weights*y
    wweights = wweights.flatten()
    wweights = scipy.reshape(wweights, [1, wweights.size])
    ny= y.shape[0]
    a = scipy.zeros([ny, 1])
    b = scipy.ones([ny, 1])
    yy = scipy.vstack((a, b))
    pprob = scipy.vstack((prob,prob))
    result = auc(yy, pprob, wweights)
    return(result)
#=========================
glmnetPredict.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def lambda_interp(lambdau, s):
# lambda is the index sequence that is produced by the model
# s is the new vector at which evaluations are required.
# the value is a vector of left and right indices, and a vector of fractions.
# the new values are interpolated bewteen the two using the fraction
# Note: lambda decreases. you take:
# sfrac*left+(1-sfrac*right)
    if len(lambdau) == 1:
        nums = len(s)
        left = scipy.zeros([nums, 1], dtype = scipy.integer)
        right = left
        sfrac = scipy.zeros([nums, 1], dtype = scipy.float64)
    else:
        s[s > scipy.amax(lambdau)] = scipy.amax(lambdau)
        s[s < scipy.amin(lambdau)] = scipy.amin(lambdau)
        k = len(lambdau)
        sfrac = (lambdau[0] - s)/(lambdau[0] - lambdau[k - 1])
        lambdau = (lambdau[0] - lambdau)/(lambdau[0] - lambdau[k - 1]) 
        coord = scipy.interpolate.interp1d(lambdau, range(k))(sfrac)
        left = scipy.floor(coord).astype(scipy.integer, copy = False)
        right = scipy.ceil(coord).astype(scipy.integer, copy = False)
        #
        tf = left != right
        sfrac[tf] = (sfrac[tf] - lambdau[right[tf]])/(lambdau[left[tf]] - lambdau[right[tf]])
        sfrac[~tf] = 1.0
        #if left != right:
        #    sfrac = (sfrac - lambdau[right])/(lambdau[left] - lambdau[right])
        #else:
        #    sfrac[left == right] = 1.0

    result = dict()    
    result['left'] = left
    result['right'] = right
    result['frac'] = sfrac

    return(result)
# end of lambda_interp    
# =========================================
cvlognet.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def auc_mat(y, prob, weights = None):
    if weights == None or len(weights) == 0:
        weights = scipy.ones([y.shape[0], 1])
    wweights = weights*y
    wweights = wweights.flatten()
    wweights = scipy.reshape(wweights, [1, wweights.size])
    ny= y.shape[0]
    a = scipy.zeros([ny, 1])
    b = scipy.ones([ny, 1])
    yy = scipy.vstack((a, b))
    pprob = scipy.vstack((prob,prob))
    result = auc(yy, pprob, wweights)
    return(result)
#=========================
glmnetPredict.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def lambda_interp(lambdau, s):
# lambda is the index sequence that is produced by the model
# s is the new vector at which evaluations are required.
# the value is a vector of left and right indices, and a vector of fractions.
# the new values are interpolated bewteen the two using the fraction
# Note: lambda decreases. you take:
# sfrac*left+(1-sfrac*right)
    if len(lambdau) == 1:
        nums = len(s)
        left = scipy.zeros([nums, 1], dtype = scipy.integer)
        right = left
        sfrac = scipy.zeros([nums, 1], dtype = scipy.float64)
    else:
        s[s > scipy.amax(lambdau)] = scipy.amax(lambdau)
        s[s < scipy.amin(lambdau)] = scipy.amin(lambdau)
        k = len(lambdau)
        sfrac = (lambdau[0] - s)/(lambdau[0] - lambdau[k - 1])
        lambdau = (lambdau[0] - lambdau)/(lambdau[0] - lambdau[k - 1]) 
        coord = scipy.interpolate.interp1d(lambdau, range(k))(sfrac)
        left = scipy.floor(coord).astype(scipy.integer, copy = False)
        right = scipy.ceil(coord).astype(scipy.integer, copy = False)
        #
        tf = left != right
        sfrac[tf] = (sfrac[tf] - lambdau[right[tf]])/(lambdau[left[tf]] - lambdau[right[tf]])
        sfrac[~tf] = 1.0
        #if left != right:
        #    sfrac = (sfrac - lambdau[right])/(lambdau[left] - lambdau[right])
        #else:
        #    sfrac[left == right] = 1.0

    result = dict()    
    result['left'] = left
    result['right'] = right
    result['frac'] = sfrac

    return(result)
# end of lambda_interp    
# =========================================
glmnetPredict.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 75 收藏 0 点赞 0 评论 0
def lambda_interp(lambdau, s):
# lambda is the index sequence that is produced by the model
# s is the new vector at which evaluations are required.
# the value is a vector of left and right indices, and a vector of fractions.
# the new values are interpolated bewteen the two using the fraction
# Note: lambda decreases. you take:
# sfrac*left+(1-sfrac*right)
    if len(lambdau) == 1:
        nums = len(s)
        left = scipy.zeros([nums, 1], dtype = scipy.integer)
        right = left
        sfrac = scipy.zeros([nums, 1], dtype = scipy.float64)
    else:
        s[s > scipy.amax(lambdau)] = scipy.amax(lambdau)
        s[s < scipy.amin(lambdau)] = scipy.amin(lambdau)
        k = len(lambdau)
        sfrac = (lambdau[0] - s)/(lambdau[0] - lambdau[k - 1])
        lambdau = (lambdau[0] - lambdau)/(lambdau[0] - lambdau[k - 1]) 
        coord = scipy.interpolate.interp1d(lambdau, range(k))(sfrac)
        left = scipy.floor(coord).astype(scipy.integer, copy = False)
        right = scipy.ceil(coord).astype(scipy.integer, copy = False)
        #
        tf = left != right
        sfrac[tf] = (sfrac[tf] - lambdau[right[tf]])/(lambdau[left[tf]] - lambdau[right[tf]])
        sfrac[~tf] = 1.0
        #if left != right:
        #    sfrac = (sfrac - lambdau[right])/(lambdau[left] - lambdau[right])
        #else:
        #    sfrac[left == right] = 1.0

    result = dict()    
    result['left'] = left
    result['right'] = right
    result['frac'] = sfrac

    return(result)
# end of lambda_interp    
# =========================================
cvlognet.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 46 收藏 0 点赞 0 评论 0
def auc_mat(y, prob, weights = None):
    if weights == None or len(weights) == 0:
        weights = scipy.ones([y.shape[0], 1])
    wweights = weights*y
    wweights = wweights.flatten()
    wweights = scipy.reshape(wweights, [1, wweights.size])
    ny= y.shape[0]
    a = scipy.zeros([ny, 1])
    b = scipy.ones([ny, 1])
    yy = scipy.vstack((a, b))
    pprob = scipy.vstack((prob,prob))
    result = auc(yy, pprob, wweights)
    return(result)
#=========================
imdb_success_predictor.py 文件源码 项目:Movie-Success-Predictor 作者: Blueteak 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_input(movie_info):
    # don't want to cinlude movie_id, title, country in predicition
    SKIP = 3
    WIDTH = len(movie_info[0]) - SKIP
    X = scipy.zeros((len(movie_info), WIDTH))
    for i in range(0, len(movie_info)):
        for j in range(SKIP, WIDTH):
        try:
                    X[i, j-SKIP] = movie_info[i][j] if movie_info[i][j] != '' else 0
        except Exception:
            pass
    return X
imdb_success_predictor.py 文件源码 项目:Movie-Success-Predictor 作者: Blueteak 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_output(movie_info):
    Y = scipy.zeros(len(movie_info))
    for i in range(0, len(movie_info)):
        gross = movie_info[i][15]
        if gross > 1000000:
            Y[i] = 1
    print 'Number of successful movies', sum(Y)
    return Y
imdb_success_predictor.py 文件源码 项目:Movie-Success-Predictor 作者: Blueteak 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def create_output_before_release(movie_info):
    Y = scipy.zeros(len(movie_info))
    for i in range(0, len(movie_info)):
        gross = movie_info[i][14]
        if gross > 1000000:
            Y[i] = 1
    print 'Number of successful movies', sum(Y)
    return Y
kss.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def subtruction(ssignal,ksignal,window,winsize,method):
    nf = len(ssignal)/(winsize/2) - 1
    out=sp.zeros(len(ssignal),sp.float32)
    for no in xrange(nf):
        s = get_frame(ssignal, winsize, no)
        k = get_frame(ksignal, winsize, no)
        add_signal(out, method.compute(s,k), winsize, no)
    return out
kss.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def fin(size,signal):
    fil = sp.zeros(size,sp.float32)
    for i in xrange(size):
        ratio=sp.log10((i+1)/float(size)*10+1.0)
        if ratio>1.0:
            ratio=1.0
        fil[i] = ratio
    return fil*signal
kss.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def fout(size,signal):
    fil = sp.zeros(size,sp.float32)
    for i in xrange(size):
        ratio = sp.log10((size-i)/float(size)*10+1.0)
        if ratio>1.0:
            ratio = 1.0
        fil[i] = ratio
    return fil*signal
kss.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def vad(vas,signal,winsize,window):
    out=sp.zeros(len(signal),sp.float32)
    for va in vas:
        for i in range(va[0],va[1]):
            add_signal(out,get_frame(signal, winsize, i)*window,winsize,i)
    for va in vas:
        out[(va[0])*winsize/2:(va[0]+4)*winsize/2] = fin(winsize*2,out[(va[0])*winsize/2:(va[0]+4)*winsize/2])
        out[(va[1]-4)*winsize/2:(va[1])*winsize/2] = fout(winsize*2,out[(va[1]-4)*winsize/2:(va[1])*winsize/2])
    return out
noise_reduction_with_ms.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def read(fname,winsize):
    if fname =="-":
        wf=wave.open(sys.stdin,'rb')
        n=wf.getnframes()
        str=wf.readframes(n)
        params = ((wf.getnchannels(), wf.getsampwidth(),
                   wf.getframerate(), wf.getnframes(),
                   wf.getcomptype(), wf.getcompname()))
        siglen=((int )(len(str)/2/winsize) + 1) * winsize
        signal=sp.zeros(siglen, sp.float32)
        signal[0:len(str)/2] = sp.float32(sp.fromstring(str,sp.int16))/32767.0
        return signal,params
    else:
        return read_signal(fname,winsize)
noise_reduction.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def noise_reduction(signal,params,winsize,window,ss,ntime):
    out=sp.zeros(len(signal),sp.float32)
    n_pow = compute_avgpowerspectrum(signal[0:winsize*int(params[2] /float(winsize)/(1000.0/ntime))],winsize,window)#maybe 300ms
    nf = len(signal)/(winsize/2) - 1
    for no in xrange(nf):
        s = get_frame(signal, winsize, no)
        add_signal(out, ss.compute_by_noise_pow(s,n_pow), winsize, no)
    return out
noise_reduction.py 文件源码 项目:pyssp 作者: shunsukeaihara 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def read(fname,winsize):
    if fname =="-":
        wf=wave.open(sys.stdin,'rb')
        n=wf.getnframes()
        str=wf.readframes(n)
        params = ((wf.getnchannels(), wf.getsampwidth(),
                   wf.getframerate(), wf.getnframes(),
                   wf.getcomptype(), wf.getcompname()))
        siglen=((int )(len(str)/2/winsize) + 1) * winsize
        signal=sp.zeros(siglen, sp.float32)
        signal[0:len(str)/2] = sp.float32(sp.fromstring(str,sp.int16))/32767.0
        return signal,params
    else:
        return read_signal(fname,winsize)


问题


面经


文章

微信
公众号

扫码关注公众号