python类log()的实例源码

LightGBMExam.py 文件源码 项目:Tencent2017_Final_Coda_Allegro 作者: BladeCoda 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def logloss(act, pred):
  epsilon = 1e-15
  pred = sp.maximum(epsilon, pred)
  pred = sp.minimum(1-epsilon, pred)
  ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
  ll = ll * -1.0/len(act)
  return ll
util.py 文件源码 项目:temci 作者: parttimenerd 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def geom_std(values: t.List[float]) -> float:
    """
    Calculates the geometric standard deviation for the passed values.
    Source: https://en.wikipedia.org/wiki/Geometric_standard_deviation
    """
    import scipy.stats as stats
    import scipy as sp
    gmean = stats.gmean(values)
    return sp.exp(sp.sqrt(sp.sum([sp.log(x / gmean) ** 2 for x in values]) / len(values)))
cvfishnet.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def devi(yy, eta):
    deveta = yy*eta - scipy.exp(eta)
    devy = yy*scipy.log(yy) - yy
    devy[yy == 0] = 0
    result = 2*(devy - deveta)
    return(result)
cvfishnet.py 文件源码 项目:glmnet_py 作者: hanfang 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def devi(yy, eta):
    deveta = yy*eta - scipy.exp(eta)
    devy = yy*scipy.log(yy) - yy
    devy[yy == 0] = 0
    result = 2*(devy - deveta)
    return(result)
np_utils.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y*sp.log(p) + sp.subtract(1,y)*sp.log(sp.subtract(1,p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def multiclass_logloss(P, Y):
    score = 0.
    npreds = [P[i][Y[i]-1] for i in range(len(Y))]
    score = -(1./len(Y)) * np.sum(np.log(npreds))
    return score
tfidf.py 文件源码 项目:Building-Machine-Learning-Systems-With-Python-Second-Edition 作者: PacktPublishing 项目源码 文件源码 阅读 59 收藏 0 点赞 0 评论 0
def tfidf(t, d, D):
    tf = float(d.count(t)) / sum(d.count(w) for w in set(d))
    idf = sp.log(float(len(D)) / (len([doc for doc in D if t in doc])))
    return tf * idf
np_utils.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def multiclass_logloss(P, Y):
    npreds = [P[i][Y[i]-1] for i in range(len(Y))]
    score = -(1. / len(Y)) * np.sum(np.log(npreds))
    return score
doFeats_1.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
train_cv.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
doFeats_2.py 文件源码 项目:Tencent_Social_Ads 作者: freelzy 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def logloss(act, preds):
    epsilon = 1e-15
    preds = sp.maximum(epsilon, preds)
    preds = sp.minimum(1 - epsilon, preds)
    ll = sum(act * sp.log(preds) + sp.subtract(1, act) * sp.log(sp.subtract(1, preds)))
    ll = ll * -1.0 / len(act)
    return ll
modelLogNormal.py 文件源码 项目:scrap 作者: BruceJohnJennerLawso 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def getModelpdf(self, x):
        if(x>=0):
            output = 1.0/(  (x*self.getSigmaValue())*sqrt(2*np.pi) )
            output *= exp(-0.5*((log(x)- self.getx0Value())/self.getSigmaValue())**2)
        else:
            output = x      

        return scipy.where((x<0), 0.0, output)
helpingMethods.py 文件源码 项目:sGLMM 作者: YeWenting 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def nLLeval(ldelta, Uy, S, REML=True):
    """
    evaluate the negative log likelihood of a random effects model:
    nLL = 1/2(n_s*log(2pi) + logdet(K) + 1/ss * y^T(K + deltaI)^{-1}y,
    where K = USU^T.

    Uy: transformed outcome: n_s x 1
    S:  eigenvectors of K: n_s
    ldelta: log-transformed ratio sigma_gg/sigma_ee
    """
    n_s = Uy.shape[0]
    delta = scipy.exp(ldelta)

    # evaluate log determinant
    Sd = S + delta
    ldet = scipy.sum(scipy.log(Sd))

    # evaluate the variance
    Sdi = 1.0 / Sd
    Sdi=Sdi.reshape((Sdi.shape[0],1))
    ss = 1. / n_s * (Uy*Uy*Sdi).sum()
    # evalue the negative log likelihood
    nLL = 0.5 * (n_s * scipy.log(2.0 * scipy.pi) + ldet + n_s + n_s * scipy.log(ss))

    if REML:
        pass

    return nLL
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def logloss(act, pred):
    epsilon = 1e-15
    pred = sp.maximum(epsilon, pred)
    pred = sp.minimum(1-epsilon, pred)
    ll = sum(act*sp.log(pred) + sp.subtract(1,act)*sp.log(sp.subtract(1,pred)))
    ll = ll * -1.0/len(act)
    return ll
utils.py 文件源码 项目:Tencent_Social_Advertising_Algorithm_Competition 作者: guicunbin 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def self_eval(pred,train_data):
    '''
    :pred 
    :train_data ?? labels
    '''
    try:
        labels=train_data.get_label()
    except:
        labels=train_data
    epsilon = 1e-15
    pred = np.maximum(epsilon,  pred)
    pred = np.minimum(1-epsilon,pred)
    ll = sum(labels*np.log(pred) + (1 - labels)*np.log(1 - pred))
    ll = ll * (-1.0)/len(labels)
    return 'log loss', ll, False
np_utils.py 文件源码 项目:CopyNet 作者: MingyuanXie 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def binary_logloss(p, y):
    epsilon = 1e-15
    p = sp.maximum(epsilon, p)
    p = sp.minimum(1-epsilon, p)
    res = sum(y * sp.log(p) + sp.subtract(1, y) * sp.log(sp.subtract(1, p)))
    res *= -1.0/len(y)
    return res
np_utils.py 文件源码 项目:CopyNet 作者: MingyuanXie 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def multiclass_logloss(P, Y):
    score = 0.
    npreds = [P[i][Y[i]-1] for i in range(len(Y))]
    score = -(1. / len(Y)) * np.sum(np.log(npreds))
    return score
gmm_ridge.py 文件源码 项目:dzetsaka 作者: lennepkade 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compute_inverse_logdet(self,c,tau):
        Lr = self.L[c,:]+tau # Regularized eigenvalues
        temp = self.Q[c,:,:]*(1/Lr)
        invCov = sp.dot(temp,self.Q[c,:,:].T) # Pre compute the inverse
        logdet = sp.sum(sp.log(Lr)) # Compute the log determinant
        return invCov,logdet
gmm_ridge.py 文件源码 项目:dzetsaka 作者: lennepkade 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def BIC(self,x,y,tau=None):
        '''
        Computes the Bayesian Information Criterion of the model
        '''
        ## Get information from the data
        C,d = self.mean.shape
        n = x.shape[0]

        ## Initialization
        if tau is None:
            TAU=self.tau
        else:
            TAU=tau

        ## Penalization
        P = C*(d*(d+3)/2) + (C-1)
        P *= sp.log(n)

        ## Compute the log-likelihood
        L = 0
        for c in range(C):
            j = sp.where(y==(c+1))[0]
            xi = x[j,:]
            invCov,logdet = self.compute_inverse_logdet(c,TAU)
            cst = logdet - 2*sp.log(self.prop[c]) # Pre compute the constant
            xi -= self.mean[c,:]
            temp = sp.dot(invCov,xi.T).T
            K = sp.sum(xi*temp,axis=1)+cst
            L +=sp.sum(K)
            del K,xi

        return L + P


问题


面经


文章

微信
公众号

扫码关注公众号