python类misc()的实例源码

img_utils.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def center_crop(image, pre_height, pre_width, height, width):
    h, w = image.shape[:2]
    j, i = int((h - pre_height)/2.), int((w - pre_width)/2.)
    return scipy.misc.imresize(
        image[j:j+pre_height, i:i+pre_width], [height, width])
img_utils.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def transform(image, pre_height, pre_width, height, width, is_crop):
    if is_crop:
        new_image = center_crop(image, pre_height, pre_width, height, width)
    else:
        new_image = scipy.misc.imresize(image, [height, width])
    return np.array(new_image)/127.5 - 1.
img_utils.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def imread(path, is_grayscale=False):
    if is_grayscale:
        return scipy.misc.imread(path, flatten=True).astype(np.float)
    return scipy.misc.imread(path).astype(np.float)
img_utils.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def save_data(path, image_folder='./images/', label_folder='./labels/'):
    if not os.path.exists(image_folder):
        os.makedirs(image_folder)
    if not os.path.exists(label_folder):
        os.makedirs(label_folder)
    data_file = h5py.File(path, 'r')
    for index in range(data_file['X'].shape[0]):
        scipy.misc.imsave(image_folder+str(index)+'.png', data_file['X'][index])
        imsave(data_file['Y'][index], label_folder+str(index)+'.png')
img_utils.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def center_crop(image, pre_height, pre_width, height, width):
    h, w = image.shape[:2]
    j, i = int((h - pre_height)/2.), int((w - pre_width)/2.)
    return scipy.misc.imresize(
        image[j:j+pre_height, i:i+pre_width], [height, width])
img_utils.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def transform(image, pre_height, pre_width, height, width, is_crop):
    if is_crop:
        new_image = center_crop(image, pre_height, pre_width, height, width)
    else:
        new_image = scipy.misc.imresize(image, [height, width])
    return np.array(new_image)/127.5 - 1.
img_utils.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def imread(path, is_grayscale=False):
    if is_grayscale:
        return scipy.misc.imread(path, flatten=True).astype(np.float)
    return scipy.misc.imread(path).astype(np.float)
img_utils.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def save_data(path, image_folder='./images/', label_folder='./labels/'):
    if not os.path.exists(image_folder):
        os.makedirs(image_folder)
    if not os.path.exists(label_folder):
        os.makedirs(label_folder)
    data_file = h5py.File(path, 'r')
    for index in range(data_file['X'].shape[0]):
        scipy.misc.imsave(image_folder+str(index)+'.png', data_file['X'][index])
        imsave(data_file['Y'][index], label_folder+str(index)+'.png')
leveler.py 文件源码 项目:Maybe-Useful-Cogs 作者: AznStevy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _auto_color(self, url:str, ranks):
        phrases = ["Calculating colors..."] # in case I want more
        #try:
        await self.bot.say("**{}**".format(random.choice(phrases)))
        clusters = 10

        async with self.session.get(url) as r:
            image = await r.content.read()
        with open('data/leveler/temp_auto.png','wb') as f:
            f.write(image)

        im = Image.open('data/leveler/temp_auto.png').convert('RGBA')
        im = im.resize((290, 290)) # resized to reduce time
        ar = scipy.misc.fromimage(im)
        shape = ar.shape
        ar = ar.reshape(scipy.product(shape[:2]), shape[2])

        codes, dist = scipy.cluster.vq.kmeans(ar.astype(float), clusters)
        vecs, dist = scipy.cluster.vq.vq(ar, codes)         # assign codes
        counts, bins = scipy.histogram(vecs, len(codes))    # count occurrences

        # sort counts
        freq_index = []
        index = 0
        for count in counts:
            freq_index.append((index, count))
            index += 1
        sorted_list = sorted(freq_index, key=operator.itemgetter(1), reverse=True)

        colors = []
        for rank in ranks:
            color_index = min(rank, len(codes))
            peak = codes[sorted_list[color_index][0]] # gets the original index
            peak = peak.astype(int)

            colors.append(''.join(format(c, '02x') for c in peak))
        return colors # returns array
        #except:
            #await self.bot.say("```Error or no scipy. Install scipy doing 'pip3 install numpy' and 'pip3 install scipy' or read here: https://github.com/AznStevy/Maybe-Useful-Cogs/blob/master/README.md```")

    # converts hex to rgb
generateSpectrograms.py 文件源码 项目:CNNs-Speech-Music-Discrimination 作者: MikeMpapa 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def createSpectrogramFile(x, Fs, fileName, stWin, stStep):
        specgramOr, TimeAxis, FreqAxis = aF.stSpectogram(x, Fs, round(Fs * stWin), round(Fs * stStep), False)            
        print specgramOr.shape
        if inputs[2]=='full':
            print specgramOr
            numpy.save(fileName.replace('.png','')+'_spectrogram', specgramOr)
        else:   
            #specgram = scipy.misc.imresize(specgramOr, float(227.0) / float(specgramOr.shape[0]), interp='bilinear')                        
            specgram = cv2.resize(specgramOr,(227, 227), interpolation = cv2.INTER_LINEAR)
            im1 = Image.fromarray(numpy.uint8(matplotlib.cm.jet(specgram)*255))
            scipy.misc.imsave(fileName, im1)
dataprocessing.py 文件源码 项目:FacialExpressionRecognition 作者: LamUong 项目源码 文件源码 阅读 85 收藏 0 点赞 0 评论 0
def Zoomed(data):
    datazoomed = scipy.misc.imresize(data,(60,60))
    datazoomed = datazoomed[5:53,5:53]
    datazoomed = datazoomed.reshape(2304).tolist()
    return datazoomed
dataprocessing.py 文件源码 项目:FacialExpressionRecognition 作者: LamUong 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def outputImage(pixels,number):
    data = pixels
    name = str(number)+"output.jpg" 
    scipy.misc.imsave(name, data)
samples_plgs.py 文件源码 项目:imagepy 作者: Image-Py 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, title):
        self.title = title
        if hasattr(data, title):
            self.data = getattr(data, title)
        else : self.data = getattr(misc, title)
preprocess_data.py 文件源码 项目:tensorflow1 作者: wasif26 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def process(image):
    # apply gaussian filter to image to make text wider
    image = gaussian_filter(image, sigma=BLUR_AMOUNT)
    # invert black and white because most of the image is white
    image = 255 - image
    # resize image to make it smaller
    image = scipy.misc.imresize(arr=image, size=(FINAL_SIZE, FINAL_SIZE))
    # scale down the value of each pixel
    image = image / 255.0
    # flatten the image array to a list
    return [item for sublist in image for item in sublist]
02_create_clothdataset.py 文件源码 项目:generating_people 作者: classner 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def convert(inputs):
    imname = inputs['original_filename']
    image = inputs['image']
    labels = inputs['labels']
    label_vis = inputs['label_vis']
    results = []
    segmentation = labels[:, :, 0]
    norm_factor = float(crop) / max(image.shape[:2])
    image = scipy.misc.imresize(image, norm_factor, interp='bilinear')
    segmentation = scipy.misc.imresize(segmentation, norm_factor, interp='nearest')
    if image.shape[0] < crop:
        # Pad height.
        image = pad_height(image, crop)
        segmentation = pad_height(segmentation, crop)
    if image.shape[1] < crop:
        image = pad_width(image, crop)
        segmentation = pad_width(segmentation, crop)
    labels = np.dstack([segmentation] * 3)
    label_vis = apply_colormap(segmentation, vmax=21, vmin=0, cmap=CMAP)[:, :, :3]
    results.append([imname, image * (labels != 0), labels, label_vis])
    # Swapped version.
    imname = path.splitext(imname)[0] + '_swapped' + path.splitext(imname)[1]
    image = image[:, ::-1]
    segmentation = segmentation[:, ::-1]
    segmentation = lrswap_regions(segmentation)
    labels = np.dstack([segmentation] * 3)
    label_vis = apply_colormap(segmentation, vmax=21, vmin=0, cmap=CMAP)[:, :, :3]
    results.append([imname, image * (labels != 0), labels, label_vis])
    return results
bounce.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fix_image(image_filename):
    image = scipy.misc.imread(test_filenames[i], flatten=False)
    image = scipy.misc.imresize(image, [image_size, image_size])
    image = skimage.img_as_float(image)
    image = np.swapaxes(image, 0, 2)
    image = np.swapaxes(image, 1, 2)    
    return image
bounce.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test():
    print("testing...")
    predictor_model = sys.argv[3]
    predictor.load_state_dict(torch.load(predictor_model))

    img_outputs = predict_test_sequence().data.cpu().numpy()
    for i in range(num_outputs):
        img = img_outputs[i].reshape(num_components, image_size, image_size)
        img = np.swapaxes(img, 0, 1)
        img = np.swapaxes(img, 1, 2)
        print(img.shape)
        scipy.misc.imsave("output_" + str(i).zfill(3) + ".png", img)

#train()
kanji_gan.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def test():
    print("testing...")
    generator_model = "gen_epoch_39.pth"
    discriminator_model = "disc_epoch_39.pth"    
    generator.load_state_dict(torch.load(generator_model))
    discriminator.load_state_dict(torch.load(discriminator_model))

    dump_sheet = True
    if (dump_sheet):
        fake = generator(fixed_noise)
        out_file = "sheet.png"
        print("saving to: " + out_file)
        vutils.save_image(fake.data, out_file)

    make_video = True
    if (make_video):
        video_noise = Variable(torch.FloatTensor(1, nz, 1, 1)).cuda()
        video_noise_cpu = fixed_noise[0].data.cpu().numpy()#np.random.normal(loc=0.0, scale=1.0, size=[1, nz, 1, 1])
        video_noise.data.copy_(torch.from_numpy(video_noise_cpu))

        noise_vel_speed = 0.05
        video_noise_vel = np.random.uniform(low=-noise_vel_speed, high=noise_vel_speed, size=[1, nz, 1, 1])

        num_frames = 300
        for frame_idx in range(num_frames):
            print(frame_idx)

            video_frame = generator(video_noise).data.cpu().numpy()
            video_frame = video_frame.reshape([nc, image_size, image_size]).transpose()

            scipy.misc.imsave("frame_" + str(frame_idx).zfill(5) + ".png", video_frame.reshape([image_size, image_size]))

            video_noise_cpu = np.mod(video_noise_cpu + video_noise_vel, 1.0)
            video_noise.data.copy_(torch.from_numpy(video_noise_cpu))
create_kanji_dataset.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def augment_kanji(kanji, augmentation_idx):
    angle = np.random.randint(0,360) * (np.pi / 180.0)
    dist = np.random.randint(0,aug_translation_max_dist)
    x = int(math.cos(angle) * dist)
    y = int(math.sin(angle) * dist)


    augmented = np.roll(kanji, [y, x], axis=[0, 1])

    #angle_step = (np.pi * 2.0) / float(num_augmentations+1)
    #angle = angle_step + (angle_step * float(augmentation_idx))
    #angle *= (180.0 / np.pi) # degrees
    rot_angle = np.random.randint(-2, 2)
    augmented = scipy.misc.imrotate(augmented, rot_angle, interp="bilinear")

    pad_max = 12
    pad_w = np.random.randint(0, pad_max)
    pad_h = pad_w
    augmented = np.pad(augmented, ((pad_h, pad_h), (pad_w, pad_w)), mode="constant")
    augmented = scipy.misc.imresize(augmented, [kanji_height, kanji_width])

    augmented = skimage.img_as_float(augmented).astype(np.float32)

    noise = np.random.uniform(low=0.1, high=0.5)
    augmented += np.random.uniform(low=-noise, high=noise, size=augmented.shape)
    augmented = np.maximum(0.0, np.minimum(augmented, 1.0))

    return augmented
create_kanji_dataset.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def rasterize_all_kanji():
    df = pd.read_csv("kanji.csv", sep="\t", header=None)
    kanji_strings = df[1].dropna().values
    num_kanji = kanji_strings.size
    print("Kanji: " + str(num_kanji))

    weights = ["normal"]#"normal", "light", "bold"]
    num_weights = len(weights)

    images = np.zeros([num_kanji*num_weights*(num_augmentations+1), kanji_height, kanji_width])
    kanjis = np.zeros([num_kanji*num_weights*(num_augmentations+1)], dtype=np.uint32)

    image_idx = 0
    for kanji_idx in range(num_kanji):
        print("Kanji " + str(kanji_idx))
        kanji = kanji_strings[kanji_idx]

        for weight_idx in range(num_weights):
            weight = weights[weight_idx]
            image = rasterize_kanji(kanji, weights[weight_idx], "images/" + str(kanji_idx).zfill(5) + "_" + weight + ".png")
            images[image_idx] = image
            kanjis[image_idx] = kanji_idx
            image_idx += 1

            for augmentation_idx in range(num_augmentations):
                augmented_img = augment_kanji(image, augmentation_idx)
                #scipy.misc.imsave("aug_" + str(kanji_idx).zfill(4) + "_" + str(weight_idx) + "_" + str(augmentation_idx).zfill(2) + ".png", augmented_img)
                images[image_idx] = augmented_img
                kanjis[image_idx] = kanji_idx
                image_idx += 1

    return images, kanjis


问题


面经


文章

微信
公众号

扫码关注公众号