python类misc()的实例源码

imageutils.py 文件源码 项目:astrobase 作者: waqasbhatti 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def nparr_to_full_jpeg(nparr,
                       out_fname,
                       outsizex=770,
                       outsizey=770,
                       scale=True,
                       scale_func=clipped_linscale_img,
                       scale_func_params={'cap':255.0,
                                          'lomult':2,
                                          'himult':2.5}):
    '''
    This just writes a numpy array to a JPEG.

    '''
    if scale:
        scaled_img = scale_func(nparr,**scale_func_params)
    else:
        scaled_img = nparr

    resized_img = scipy.misc.imresize(scaled_img,
                                      (outsizex,outsizey))
    if out_fname is None:
        out_fname = fits_image + '.jpeg'
    scipy.misc.imsave(out_fname,resized_img)
image_utils.py 文件源码 项目:magenta 作者: tensorflow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_np_image_uint8(image_file):
  """Loads an image as a numpy array.

  Args:
    image_file: str. Image file.

  Returns:
    A 3-D numpy array of shape [image_size, image_size, 3] and dtype uint8,
    with values in [0, 255].
  """
  with tempfile.NamedTemporaryFile() as f:
    f.write(tf.gfile.GFile(image_file, 'rb').read())
    f.flush()
    image = scipy.misc.imread(f.name)
    # Workaround for black-and-white images
    if image.ndim == 2:
      image = np.tile(image[:, :, None], (1, 1, 3))
    return image
image_utils.py 文件源码 项目:magenta 作者: tensorflow 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def save_np_image(image, output_file, save_format='jpeg'):
  """Saves an image to disk.

  Args:
    image: 3-D numpy array of shape [image_size, image_size, 3] and dtype
        float32, with values in [0, 1].
    output_file: str, output file.
    save_format: format for saving image (eg. jpeg).
  """
  image = np.uint8(image * 255.0)
  buf = io.BytesIO()
  scipy.misc.imsave(buf, np.squeeze(image, 0), format=save_format)
  buf.seek(0)
  f = tf.gfile.GFile(output_file, 'w')
  f.write(buf.getvalue())
  f.close()
img_utils.py 文件源码 项目:PixelDCN 作者: HongyangGao 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def imsave(image, path):
    label_colours = [
        (0,0,0),
        # 0=background
        (128,0,0),(0,128,0),(128,128,0),(0,0,128),(128,0,128),
        # 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
        (0,128,128),(128,128,128),(64,0,0),(192,0,0),(64,128,0),
        # 6=bus, 7=car, 8=cat, 9=chair, 10=cow
        (192,128,0),(64,0,128),(192,0,128),(64,128,128),(192,128,128),
        # 11=diningtable, 12=dog, 13=horse, 14=motorbike, 15=person
        (0,64,0),(128,64,0),(0,192,0),(128,192,0),(0,64,128)]
        # 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
    images = np.ones(list(image.shape)+[3])
    for j_, j in enumerate(image):
        for k_, k in enumerate(j):
            if k < 21:
                images[j_, k_] = label_colours[int(k)]
    scipy.misc.imsave(path, images)
img_utils.py 文件源码 项目:3D_Dense_Transformer_Networks 作者: JohnYC1995 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def imsave(image, path):
    label_colours = [
        (0,0,0),
        # 0=background
        (128,0,0),(0,128,0),(128,128,0),(0,0,128),(128,0,128),
        # 1=aeroplane, 2=bicycle, 3=bird, 4=boat, 5=bottle
        (0,128,128),(128,128,128),(64,0,0),(192,0,0),(64,128,0),
        # 6=bus, 7=car, 8=cat, 9=chair, 10=cow
        (192,128,0),(64,0,128),(192,0,128),(64,128,128),(192,128,128),
        # 11=diningtable, 12=dog, 13=horse, 14=motorbike, 15=person
        (0,64,0),(128,64,0),(0,192,0),(128,192,0),(0,64,128)]
        # 16=potted plant, 17=sheep, 18=sofa, 19=train, 20=tv/monitor
    images = np.ones(list(image.shape)+[3])
    for j_, j in enumerate(image):
        for k_, k in enumerate(j):
            if k < 21:
                images[j_, k_] = label_colours[int(k)]
    scipy.misc.imsave(path, images)
pyxpose.py 文件源码 项目:pyxpose 作者: PetitPrince 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def find_a_dominant_color(image):
    # K-mean clustering to find the k most dominant color, from:
    # http://stackoverflow.com/questions/3241929/python-find-dominant-most-common-color-in-an-image
    n_clusters = 5

    # Get image into a workable form
    im = image.copy()
    im = im.resize((150, 150))      # optional, to reduce time
    ar = scipy.misc.fromimage(im)
    im_shape = ar.shape
    ar = ar.reshape(scipy.product(im_shape[:2]), im_shape[2])
    ar = np.float_(ar)

    # Compute clusters
    codes, dist = scipy.cluster.vq.kmeans(ar, n_clusters)
    vecs, dist = scipy.cluster.vq.vq(ar, codes)         # assign codes
    counts, bins = scipy.histogram(vecs, len(codes))    # count occurrences

    # Get the indexes of the most frequent, 2nd most frequent, 3rd, ...
    sorted_idxs = np.argsort(counts)

    # Get the color
    peak = codes[sorted_idxs[1]] # get second most frequent color

    return [int(i) for i in peak.tolist()] # list comprehension to quickly cast everything to int
moran_augmented.py 文件源码 项目:ldpop 作者: popgenmethods 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def getUnlinkedStationary(self, popSize, theta):
        one_loc_probs = one_locus_probs(popSize=popSize, theta=theta, n=self.n)
        assertValidProbs(one_loc_probs)

        n = self.n
        leftOnes, rightOnes, bothOnes = self.numOnes(0), self.numOnes(1), self.hapCount((1,1))
        joint = one_loc_probs[leftOnes] * one_loc_probs[rightOnes]
        if self.exact:
            joint[self.numC > 0] = 0
        else:
            joint = joint * scipy.misc.comb(rightOnes, bothOnes) * scipy.misc.comb(n-rightOnes, leftOnes-bothOnes)  / scipy.misc.comb(n, leftOnes)

        joint = joint * self.n_unfolded_versions

        assertValidProbs(joint)  
        return joint
kanji.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test():
    test_filename = sys.argv[2]
    test_image = scipy.misc.imread(test_filename, flatten=True)
    test_image = scipy.misc.imresize(test_image, [kanji_height, kanji_width])
    test_image = skimage.img_as_float(test_image).astype(np.float32)

    #test_image = 1.0 - test_image
    #test_image /= np.linalg.norm(test_image)
    #test_image = 1.0 - test_image
    scipy.misc.imsave("test.png", test_image)


    model.load("kanji.tflearn")
    Y = model.predict(test_image.reshape([-1, kanji_height, kanji_width]))[0]

    Y_indices = np.argsort(Y)[::-1]

    num_test = 5
    for i in range(num_test):
        print("Kanji: " + str(Y_indices[i]) + ", score=" + str(Y[Y_indices[i]]))
find_kanji.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test():
    test_filename = sys.argv[2]
    test_image = scipy.misc.imread(test_filename, flatten=True)
    test_image = scipy.misc.imresize(test_image, [background_height, background_width])
    test_image = skimage.img_as_float(test_image).astype(np.float32)

    model.load("find_kanji.tflearn")
    Y = model.predict(test_image.reshape([-1, background_height, background_width]))[0]

    print(Y)

    masked = np.square(Y)
    masked = scipy.misc.imresize(masked, [background_height, background_width])
    masked = test_image * masked
    scipy.misc.imsave("y.png", masked)

    #Y_indices = np.argsort(Y)[::-1]
test_data_handler.py 文件源码 项目:gy_mlcamp17 作者: gylee1103 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def next(self):
        sz = self.target_size
        output = np.ones([1, sz, sz, 1]).astype(np.float32)
        img = scipy.misc.imread(
            self._image_paths[self._index], mode='L').astype(np.float32)
        original_size = img.shape
        bigger_size = max(original_size[0], original_size[1])

        mult = 1
        if bigger_size > self.target_size:
          mult = self.target_size / float(bigger_size)



        resized_size = (int(original_size[0] * mult), int(original_size[1]*mult))
        img = scipy.misc.imresize(img, resized_size)
        img = (img - 128.0) / 128.0
        output[0, 0:resized_size[0], 0:resized_size[1], 0] = img

        self._index += 1

        return output, original_size, resized_size
sketch_data_handler.py 文件源码 项目:gy_mlcamp17 作者: gylee1103 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _random_preprocessing(self, image, size):
      # rotate image
      rand_degree = np.random.randint(0, 90)
      rand_flip = np.random.randint(0, 2)
      if rand_flip == 1:
        image = np.flip(image, 1)
      image = scipy.ndimage.interpolation.rotate(image, rand_degree, cval=255)

      # Select cropping range between (target_size/2 ~ original_size)
      original_h, original_w = image.shape
      #crop_width = np.random.randint(self.target_size/3, min(self.target_size, original_w))
      #crop_height = np.random.randint(self.target_size/3, min(self.target_size, original_h))
      crop_width = self.target_size
      crop_height = self.target_size
      topleft_x = np.random.randint(0, original_w - crop_width)
      topleft_y = np.random.randint(0, original_h - crop_height)
      cropped_img = image[topleft_y:topleft_y+crop_height,
          topleft_x:topleft_x+crop_width]
      #output = scipy.misc.imresize(cropped_img, [self.target_size, self.target_size])
      output = cropped_img

      output = (output - 128.0) / 128.0
      return output
sketch_data_handler.py 文件源码 项目:gy_mlcamp17 作者: gylee1103 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _enqueue_op(self, queue, msg_queue):
      while msg_queue.qsize() == 0:
        # randomly select index
        indexes = np.random.randint(0, self._total_num, self.batch_size)
        sz = self.target_size
        output = np.zeros([self.batch_size, sz, sz, 1])
        for i in range(len(indexes)):
          index = indexes[i]
          output[i] = self._random_preprocessing(scipy.misc.imread(
            self._image_paths[index], mode='L').astype(np.float),
            self.target_size).reshape([sz, sz, 1])
          while np.amin(output[i]) == np.amax(output[i]): # some data are strange..
            output[i] = self._random_preprocessing(scipy.misc.imread(
              self._image_paths[index], mode='L').astype(np.float32),
              self.target_size).reshape([sz, sz, 1])

        queue.put(output)
pen_data_handler.py 文件源码 项目:gy_mlcamp17 作者: gylee1103 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def _random_preprocessing(self, image, size):
      # rotate image
      rand_degree = np.random.randint(0, 180)
      rand_flip = np.random.randint(0, 2)
      image = scipy.ndimage.interpolation.rotate(image, rand_degree, cval=255)
      if rand_flip == 1:
        image = np.flip(image, 1)

      # Select cropping range between (target_size/2 ~ original_size)
      original_h, original_w = image.shape
      crop_width = np.random.randint(self.target_size/2, min(self.target_size*2, original_w))
      crop_height = np.random.randint(self.target_size/2, min(self.target_size*2, original_h))
      topleft_x = np.random.randint(0, original_w - crop_width)
      topleft_y = np.random.randint(0, original_h - crop_height)
      cropped_img = image[topleft_y:topleft_y+crop_height,
          topleft_x:topleft_x+crop_width]
      output = scipy.misc.imresize(cropped_img, [self.target_size, self.target_size])
      # threshold
      output_thres = np.where(output < 150, -1.0, 1.0)

      return output_thres
pen_data_handler.py 文件源码 项目:gy_mlcamp17 作者: gylee1103 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def _enqueue_op(self, queue, msg_queue):
      while msg_queue.qsize() == 0:
        # randomly select index
        indexes = np.random.randint(0, self._total_num, self.batch_size)
        sz = self.target_size
        output = np.ones([self.batch_size, sz, sz, 1])

        for i in range(len(indexes)):
          index = indexes[i]
          output[i] = self._random_preprocessing(scipy.misc.imread(
            self._image_paths[index], mode='L').astype(np.float32),
            self.target_size).reshape([sz, sz, 1])
          while np.amin(output[i]) == np.amax(output[i]): # some data are strange..
            output[i] = self._random_preprocessing(scipy.misc.imread(
              self._image_paths[index], mode='L').astype(np.float32),
              self.target_size).reshape([sz, sz, 1])

        queue.put(output)
tf_utils.py 文件源码 项目:mv3d 作者: lmb-freiburg 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def save_images(images, size, image_path, color=True):
    h, w = images.shape[1], images.shape[2]
    if color is True:
        img = np.zeros((h * size[0], w * size[1], 3))
    else:
        img = np.zeros((h * size[0], w * size[1]))

    for idx, image in enumerate(images):
        i = idx % size[1]
        j = math.floor(idx / size[1])
        if color is True:
            img[j*h:j*h+h, i*w:i*w+w, :] = image
        else:
            img[j*h:j*h+h, i*w:i*w+w] = image
    if color is True:
        scipy.misc.toimage(rescale_image(img),
                           cmin=0, cmax=255).save(image_path)
    else:
        scipy.misc.toimage(rescale_dm(img), cmin=0, cmax=65535,
                           low=0, high=65535, mode='I').save(image_path)
utils.py 文件源码 项目:ICGan-tensorflow 作者: zhangqianhui 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def imread(path, is_grayscale=False):
    if (is_grayscale):
        return scipy.misc.imread(path, flatten=True).astype(np.float)
    else:
        return scipy.misc.imread(path).astype(np.float)
utils.py 文件源码 项目:ICGan-tensorflow 作者: zhangqianhui 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def imsave(images, size, path):
    return scipy.misc.imsave(path, merge(images, size))
utils_combine.py 文件源码 项目:adversarial-deep-structural-networks 作者: wentaozhu 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def fetchdatalabel(path, postfix='roienhance.mat', flag='train'):  # 'enhance.mat' 'roienhance.jpeg'
  data = np.zeros((58, 40, 40))
  label = np.zeros((58, 40, 40))
  if flag == 'train':
    data = np.zeros((58*4, 40, 40))
    label = np.zeros((58*4, 40, 40))
  datacount = 0
  fname = []
  for file in os.listdir(path):
    if file.endswith(postfix):
      if postfix[-4:] == '.mat':
        im = sio.loadmat(path+file)
        im = im['im']
      elif postfix[-5:] == '.jpeg':
        im = scipy.misc.imread(path+file)
        im = im*1.0 / 255.0
      imlabel = sio.loadmat(path+file[:-len(postfix)]+'massgt.mat')
      imlabel = imlabel['im']
      data[datacount, :, :] = im
      label[datacount, :, :] = imlabel
      datacount += 1
      if flag == 'train':
        data[datacount, :, :] = im[:, ::-1]
        label[datacount, :, :] = imlabel[:, ::-1]
        data[datacount+1, :, :] = im[::-1, :]
        label[datacount+1, :, :] = imlabel[::-1, :]
        im1 = im[::-1, :]  # vertical flip, then horizontal flip
        imlabel1 = imlabel[::-1, :]
        data[datacount+2, :, :] = im1[:, ::-1]
        label[datacount+2, :, :] = imlabel1[:, ::-1] 
        datacount += 3
      fname.append(file)
  if flag == 'train': assert(datacount==58*4)
  else: assert(datacount==58)
  return data , label, fname
utils.py 文件源码 项目:adversarial-deep-structural-networks 作者: wentaozhu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def fetchdatalabel(path, postfix='roienhance.mat', flag='train'):  # 'enhance.mat' 'roienhance.jpeg'
  data = np.zeros((58, 40, 40))
  label = np.zeros((58, 40, 40))
  if flag == 'train':
    data = np.zeros((58*4, 40, 40))
    label = np.zeros((58*4, 40, 40))
  datacount = 0
  fname = []
  for file in os.listdir(path):
    if file.endswith(postfix):
      if postfix[-4:] == '.mat':
        im = sio.loadmat(path+file)
        im = im['im']
      elif postfix[-5:] == '.jpeg':
        im = scipy.misc.imread(path+file)
        im = im*1.0 / 255.0
      imlabel = sio.loadmat(path+file[:-len(postfix)]+'massgt.mat')
      imlabel = imlabel['im']
      data[datacount, :, :] = im
      label[datacount, :, :] = imlabel
      datacount += 1
      if flag == 'train':
        data[datacount, :, :] = im[:, ::-1]
        label[datacount, :, :] = imlabel[:, ::-1]
        data[datacount+1, :, :] = im[::-1, :]
        label[datacount+1, :, :] = imlabel[::-1, :]
        im1 = im[::-1, :]  # vertical flip, then horizontal flip
        imlabel1 = imlabel[::-1, :]
        data[datacount+2, :, :] = im1[:, ::-1]
        label[datacount+2, :, :] = imlabel1[:, ::-1] 
        datacount += 3
      fname.append(file)
  if flag == 'train': assert(datacount==58*4)
  else: assert(datacount==58)
  return data , label, fname
wikiartGenre.py 文件源码 项目:GANGogh 作者: rkjones4 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def make_generator(files, batch_size, n_classes):
    if batch_size % n_classes != 0:
        raise ValueError("batch size must be divisible by num classes")

    class_batch = batch_size // n_classes

    generators = []

    def get_epoch():

        while True:

            images = np.zeros((batch_size, 3, DIM, DIM), dtype='int32')
            labels = np.zeros((batch_size, n_classes))
            n=0
            for style in styles:
                styleLabel = styleNum[style]
                curr = curPos[style]
                for i in range(class_batch):
                    if curr == styles[style]:
                        curr = 0
                        random.shuffle(list(files[style]))
                    t0=time.time()
                    image = scipy.misc.imread("{}/{}/{}.png".format(path, style, str(curr)),mode='RGB')
                    #image = scipy.misc.imresize(image,(DIM,DIM))
                    images[n % batch_size] = image.transpose(2,0,1)
                    labels[n % batch_size, int(styleLabel)] = 1
                    n+=1
                    curr += 1
                curPos[style]=curr

            #randomize things but keep relationship between a conditioning vector and its associated image
            rng_state = np.random.get_state()
            np.random.shuffle(images)
            np.random.set_state(rng_state)
            np.random.shuffle(labels)
            yield (images, labels)



    return get_epoch
modelmhl.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def read_depth(self, filename):
    depth_mat = sio.loadmat(filename)
    depthtmp=depth_mat["depth"]
    ds = depthtmp.shape
    if self.is_crop:
      depth = scipy.misc.imresize(depthtmp,(self.output_height,self.output_width),mode='F')
    depth = np.array(depth).astype(np.float32)
    depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))

    return depth
modelmhl.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_img(self, filename):
    imgtmp = scipy.misc.imread(filename)
    ds = imgtmp.shape
    if self.is_crop:
      img = scipy.misc.imresize(imgtmp,(self.output_height,self.output_width,3))
    img = np.array(img).astype(np.float32)
    return img
modelmhl.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def read_depth_small(self, filename):
    depth_mat = sio.loadmat(filename)
    depthtmp=depth_mat["depth"]
    ds = depthtmp.shape

    if self.is_crop:
      depth = scipy.misc.imresize(depthtmp,(self.output_height,self.output_width),mode='F')
    depth = np.array(depth).astype(np.float32)
    depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))

    return depth
modelmhl.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_depth_sample(self, filename):
    depth_mat = sio.loadmat(filename)
    depthtmp=depth_mat["depth"]
    ds = depthtmp.shape
    if self.is_crop:
      depth = scipy.misc.imresize(depthtmp,(self.sh,self.sw),mode='F')
    depth = np.array(depth).astype(np.float32)
    depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))

    return depth
modelmhl.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def read_img_sample(self, filename):
    imgtmp = scipy.misc.imread(filename)
    ds = imgtmp.shape
    if self.is_crop:
      img = scipy.misc.imresize(imgtmp,(self.sh,self.sw,3))
    img = np.array(img).astype(np.float32)
    return img
modeljamaica.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_img(self, filename):
    imgtmp = scipy.misc.imread(filename)
    ds = imgtmp.shape
    if self.is_crop:
      img = scipy.misc.imresize(imgtmp,(self.output_height,self.output_width,3))
    img = np.array(img).astype(np.float32)
    return img
modeljamaica.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_depth_small(self, filename):
    depth_mat = sio.loadmat(filename)
    depthtmp=depth_mat["depth"]
    ds = depthtmp.shape

    if self.is_crop:
      depth = scipy.misc.imresize(depthtmp,(self.output_height,self.output_width),mode='F')
    depth = np.array(depth).astype(np.float32)
    depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))

    return depth
modeljamaica.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def read_depth_sample(self, filename):
    depth_mat = sio.loadmat(filename)
    depthtmp=depth_mat["depth"]
    ds = depthtmp.shape
    if self.is_crop:
      depth = scipy.misc.imresize(depthtmp,(self.sh,self.sw),mode='F')
    depth = np.array(depth).astype(np.float32)
    depth = np.multiply(self.max_depth,np.divide(depth,depth.max()))

    return depth
modeljamaica.py 文件源码 项目:WaterGAN 作者: kskin 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def read_img_sample(self, filename):
    imgtmp = scipy.misc.imread(filename)
    ds = imgtmp.shape
    if self.is_crop:
      img = scipy.misc.imresize(imgtmp,(self.sh,self.sw,3))
    img = np.array(img).astype(np.float32)
    return img
generate_norb_small.py 文件源码 项目:Generative-ConvACs 作者: HUJI-Deep 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def process_file(params):
    index, data, base_filename, db_name, C, aug_data = params
    label = index % NUM_CLASSES
    if C==1:
        orig_im = data[0,:,:]
        im = ndimage.interpolation.zoom(orig_im, DOWNSCALE_FACTOR)
    elif C==2:
        im = np.zeros((int(MAT_SHAPE[2]*DOWNSCALE_FACTOR),int(MAT_SHAPE[3]*DOWNSCALE_FACTOR),3))
        orig_im = np.zeros((MAT_SHAPE[2],MAT_SHAPE[3],3))
        im[:,:,0] =  ndimage.interpolation.zoom(data[0,:,:], DOWNSCALE_FACTOR)
        im[:,:,1] =  ndimage.interpolation.zoom(data[1,:,:], DOWNSCALE_FACTOR)
        orig_im[:,:,0] =  data[0,:,:]
        orig_im[:,:,1] =  data[1,:,:]
    else:
        print "Error in reading data to db- number of channels must be 1 or 2"
    im_name = '%s_%d%s' % (base_filename, index,IM_FORMAT)
    scipy.misc.toimage(im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
    im_names = [im_name]
    if aug_data:
        degrees = [-20, -10, 10, 20]
        crop_dims = [2, 4, 6, 8]
        for i, degree in enumerate(degrees):
            im_name = '%s_%d_%d%s' % (base_filename,index,degree,IM_FORMAT)
            im_names.append(im_name)
            rot_im = rotate_im(orig_im, degree)
            scipy.misc.toimage(rot_im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
        for i, crop_dim in enumerate(crop_dims):
            im_name = '%s_%d_%d%s' % (base_filename,index,crop_dim,IM_FORMAT)
            im_names.append(im_name)
            cr_im = crop_and_rescale(orig_im, crop_dim)        
            scipy.misc.toimage(cr_im, cmin=0.0, cmax=255.0).save(os.path.join(db_name,im_name))
    return label, im_names


问题


面经


文章

微信
公众号

扫码关注公众号