python类uniform()的实例源码

test_catapult.py 文件源码 项目:bolero 作者: rock-learning 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_sample_contexts_from_distribution():
    env = Catapult(segments=[(0, 0), (20, 0)], context_interval=(0, 20),
                   context_distribution=uniform(5, 10), random_state=0)
    env.init()

    contexts = np.empty(1000)
    for i in range(contexts.shape[0]):
        context = env.request_context(None)
        contexts[i] = context[0]

    norm_dist = uniform(0.25, 0.5)
    assert_true(np.all(0.25 <= contexts))
    assert_true(np.all(contexts <= 0.75))
    mean, var = norm_dist.stats("mv")
    assert_almost_equal(np.mean(contexts), mean, places=1)
    assert_almost_equal(np.var(contexts), var, places=1)
example_sample_robertson_nopysb_with_dream.py 文件源码 项目:PyDREAM 作者: LoLab-VU 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def likelihood(parameter_vector):

    parameter_vector = 10**np.array(parameter_vector)

    #Solve ODE system given parameter vector
    yout = odeint(odefunc, y0, tspan, args=(parameter_vector,))

    cout = yout[:, 2]

    #Calculate log probability contribution given simulated experimental values.

    logp_ctotal = np.sum(like_ctot.logpdf(cout))

    #If simulation failed due to integrator errors, return a log probability of -inf.
    if np.isnan(logp_ctotal):
        logp_ctotal = -np.inf

    return logp_ctotal


# Add vector of rate parameters to be sampled as unobserved random variables in DREAM with uniform priors.
acquisition.py 文件源码 项目:elfi 作者: elfi-dev 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def acquire(self, n, t=None):
        """Return random points from uniform distribution.

        Parameters
        ----------
        n : int
            Number of acquisition points to return.
        t : int, optional
            (unused)

        Returns
        -------
        x : np.ndarray
            The shape is (n, input_dim)

        """
        bounds = np.stack(self.model.bounds)
        return ss.uniform(bounds[:, 0], bounds[:, 1] - bounds[:, 0]) \
            .rvs(size=(n, self.model.input_dim), random_state=self.random_state)
test_stop_sampling.py 文件源码 项目:pyabc 作者: neuralyzer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_stop_acceptance_rate_too_low(db_path):
    set_acc_rate = 0.2

    def model(x):
        return {"par": x["par"] + sp.randn()}

    def dist(x, y):
        return abs(x["par"] - y["par"])

    abc = ABCSMC(model, Distribution(par=st.uniform(0, 10)), dist, 10)
    abc.new(db_path, {"par": .5})
    history = abc.run(-1, 8, min_acceptance_rate=set_acc_rate)
    df = history.get_all_populations()
    df["acceptance_rate"] = df["particles"] / df["samples"]
    assert df["acceptance_rate"].iloc[-1] < set_acc_rate
    assert df["acceptance_rate"].iloc[-2] >= set_acc_rate
priors.py 文件源码 项目:openml-pimp 作者: janvanrijn 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_uniform_paramgrid(hyperparameters, fixed_parameters):
    param_grid = dict()
    for param_name, hyperparameter in hyperparameters.items():
        if fixed_parameters is not None and param_name in fixed_parameters.keys():
            continue
        if isinstance(hyperparameter, CategoricalHyperparameter):
            all_values = hyperparameter.choices
            if all(item in ['True', 'False'] for item in all_values):
                all_values = [bool(item) for item in all_values]
            param_grid[param_name] = all_values
        elif isinstance(hyperparameter, UniformFloatHyperparameter):
            if hyperparameter.log:
                param_grid[param_name] = loguniform(base=2, low=hyperparameter.lower, high=hyperparameter.upper)
            else:
                param_grid[param_name] = uniform(loc=hyperparameter.lower, scale=hyperparameter.upper-hyperparameter.lower)
        elif isinstance(hyperparameter, UniformIntegerHyperparameter):
            if hyperparameter.log:
                param_grid[param_name] = loguniform_int(base=2, low=hyperparameter.lower, high=hyperparameter.upper)
            else:
                param_grid[param_name] = randint(low=hyperparameter.lower, high=hyperparameter.upper+1)
        else:
            raise ValueError()
    return param_grid
test_search.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def test_param_sampler():
    # test basic properties of param sampler
    param_distributions = {"kernel": ["rbf", "linear"],
                           "C": uniform(0, 1)}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=10, random_state=0)
    samples = [x for x in sampler]
    assert_equal(len(samples), 10)
    for sample in samples:
        assert_true(sample["kernel"] in ["rbf", "linear"])
        assert_true(0 <= sample["C"] <= 1)

    # test that repeated calls yield identical parameters
    param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}
    sampler = ParameterSampler(param_distributions=param_distributions,
                               n_iter=3, random_state=0)
    assert_equal([x for x in sampler], [x for x in sampler])

    if sp_version >= (0, 16):
        param_distributions = {"C": uniform(0, 1)}
        sampler = ParameterSampler(param_distributions=param_distributions,
                                   n_iter=10, random_state=0)
        assert_equal([x for x in sampler], [x for x in sampler])
em.py 文件源码 项目:crayimage 作者: yandexdataschool 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def gen(self, N, trials, normal_p_range, anomaly_p_range, anomaly_scale = 1.0):
    self.N = N
    self.trials = trials

    self.gens = [
      ?ompound_distribution(
        stats.uniform(loc=normal_p_range[0], scale=normal_p_range[1] - normal_p_range[0]),
        lambda a: stats.gamma(a = a, scale = 1.0)
      ),

      ?ompound_distribution(
        stats.uniform(loc=anomaly_p_range[0], scale=anomaly_p_range[1] - anomaly_p_range[0]),
        lambda a: stats.gamma(a = a, scale = anomaly_scale)
      )
    ]

    self.priors = np.array([0.9, 0.1])

    self.cats, self.params, self.X = compound_rvs(self.gens, self.priors, self.N, self.trials)
uniform_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def testUniformPDF(self):
    with self.test_session():
      a = constant_op.constant([-3.0] * 5 + [15.0])
      b = constant_op.constant([11.0] * 5 + [20.0])
      uniform = uniform_lib.Uniform(a=a, b=b)

      a_v = -3.0
      b_v = 11.0
      x = np.array([-10.5, 4.0, 0.0, 10.99, 11.3, 17.0], dtype=np.float32)

      def _expected_pdf():
        pdf = np.zeros_like(x) + 1.0 / (b_v - a_v)
        pdf[x > b_v] = 0.0
        pdf[x < a_v] = 0.0
        pdf[5] = 1.0 / (20.0 - 15.0)
        return pdf

      expected_pdf = _expected_pdf()

      pdf = uniform.prob(x)
      self.assertAllClose(expected_pdf, pdf.eval())

      log_pdf = uniform.log_prob(x)
      self.assertAllClose(np.log(expected_pdf), log_pdf.eval())
uniform_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testUniformCDF(self):
    with self.test_session():
      batch_size = 6
      a = constant_op.constant([1.0] * batch_size)
      b = constant_op.constant([11.0] * batch_size)
      a_v = 1.0
      b_v = 11.0
      x = np.array([-2.5, 2.5, 4.0, 0.0, 10.99, 12.0], dtype=np.float32)

      uniform = uniform_lib.Uniform(a=a, b=b)

      def _expected_cdf():
        cdf = (x - a_v) / (b_v - a_v)
        cdf[x >= b_v] = 1
        cdf[x < a_v] = 0
        return cdf

      cdf = uniform.cdf(x)
      self.assertAllClose(_expected_cdf(), cdf.eval())

      log_cdf = uniform.log_cdf(x)
      self.assertAllClose(np.log(_expected_cdf()), log_cdf.eval())
uniform_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def testUniformSample(self):
    with self.test_session():
      a = constant_op.constant([3.0, 4.0])
      b = constant_op.constant(13.0)
      a1_v = 3.0
      a2_v = 4.0
      b_v = 13.0
      n = constant_op.constant(100000)
      uniform = uniform_lib.Uniform(a=a, b=b)

      samples = uniform.sample(n, seed=137)
      sample_values = samples.eval()
      self.assertEqual(sample_values.shape, (100000, 2))
      self.assertAllClose(
          sample_values[::, 0].mean(), (b_v + a1_v) / 2, atol=1e-2)
      self.assertAllClose(
          sample_values[::, 1].mean(), (b_v + a2_v) / 2, atol=1e-2)
      self.assertFalse(
          np.any(sample_values[::, 0] < a1_v) or np.any(sample_values >= b_v))
      self.assertFalse(
          np.any(sample_values[::, 1] < a2_v) or np.any(sample_values >= b_v))
uniform_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def testUniformNans(self):
    with self.test_session():
      a = 10.0
      b = [11.0, 100.0]
      uniform = uniform_lib.Uniform(a=a, b=b)

      no_nans = constant_op.constant(1.0)
      nans = constant_op.constant(0.0) / constant_op.constant(0.0)
      self.assertTrue(math_ops.is_nan(nans).eval())
      with_nans = array_ops.stack([no_nans, nans])

      pdf = uniform.prob(with_nans)

      is_nan = math_ops.is_nan(pdf).eval()
      self.assertFalse(is_nan[0])
      self.assertTrue(is_nan[1])
uniform_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def testUniformSampleWithShape(self):
    with self.test_session():
      a = 10.0
      b = [11.0, 20.0]
      uniform = uniform_lib.Uniform(a, b)

      pdf = uniform.prob(uniform.sample((2, 3)))
      # pylint: disable=bad-continuation
      expected_pdf = [
          [[1.0, 0.1], [1.0, 0.1], [1.0, 0.1]],
          [[1.0, 0.1], [1.0, 0.1], [1.0, 0.1]],
      ]
      # pylint: enable=bad-continuation
      self.assertAllClose(expected_pdf, pdf.eval())

      pdf = uniform.prob(uniform.sample())
      expected_pdf = [1.0, 0.1]
      self.assertAllClose(expected_pdf, pdf.eval())
test_SklearnOutlierDetection.py 文件源码 项目:pyISC 作者: STREAM3 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_outlier_detection(self):
        print "Start of test"
        n_samples = 1000
        norm_dist = stats.norm(0, 1)

        truth = np.ones((n_samples,))
        truth[-100:] = -1

        X0 = norm_dist.rvs(n_samples)
        X = np.c_[X0*5, X0+norm_dist.rvs(n_samples)*2]

        uniform_dist = stats.uniform(-10,10)

        X[-100:] = np.c_[uniform_dist.rvs(100),uniform_dist.rvs(100)]

        outlier_detector = pyisc.SklearnOutlierDetector(
            100.0/n_samples,
            pyisc.P_Gaussian([0,1])
        )

        outlier_detector.fit(X, np.array([1]*len(X)))


        self.assertLess(outlier_detector.threshold_, 0.35)
        self.assertGreater(outlier_detector.threshold_, 0.25)

        predictions = outlier_detector.predict(X, np.array([1]*len(X)))

        accuracy =  sum(truth == predictions)/float(n_samples)

        print "accuracy", accuracy
        self.assertGreater(accuracy, 0.85)
test_big.py 文件源码 项目:skutil 作者: tgsmith61591 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_large_grid():
        """In this test, we purposely overfit a RandomForest to completely random data
        in order to assert that the test error will far supercede the train error.
        """

        if not SK18:
            custom_cv = KFold(n=y_train.shape[0], n_folds=3, shuffle=True, random_state=42)
        else:
            custom_cv = KFold(n_splits=3, shuffle=True, random_state=42)

        # define the pipe
        pipe = Pipeline([
            ('scaler', SelectiveScaler()),
            ('pca', SelectivePCA(weight=True)),
            ('rf', RandomForestClassifier(random_state=42))
        ])

        # define hyper parameters
        hp = {
            'scaler__scaler': [StandardScaler(), RobustScaler(), MinMaxScaler()],
            'pca__whiten': [True, False],
            'pca__weight': [True, False],
            'pca__n_components': uniform(0.75, 0.15),
            'rf__n_estimators': randint(5, 10),
            'rf__max_depth': randint(5, 15)
        }

        # define the grid
        grid = RandomizedSearchCV(pipe, hp, n_iter=2, scoring='accuracy', n_jobs=1, cv=custom_cv, random_state=42)

        # this will fail because we haven't fit yet
        assert_fails(grid.score, (ValueError, AttributeError), X_train, y_train)

        # fit the grid
        grid.fit(X_train, y_train)

        # score for coverage -- this might warn...
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            grid.score(X_train, y_train)

        # coverage:
        assert grid._estimator_type == 'classifier'

        # get predictions
        tr_pred, te_pred = grid.predict(X_train), grid.predict(X_test)

        # evaluate score (SHOULD be better than random...)
        accuracy_score(y_train, tr_pred), accuracy_score(y_test, te_pred)

        # grid score reports:
        # assert fails for bad percentile
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 0.0})
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 1.0})

        # assert fails for bad y_axis
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'y_axis': 'bad_axis'})

        # assert passes otherwise
        report_grid_score_detail(grid, charts=True, percentile=0.95)  # just ensure percentile works
test_hpo.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def test_simple_hpo():

    def f(args):
        x = args['x']
        return x*x

    s = {'x': {'dist': st.uniform(loc=-10., scale=20), 'lo': -10., 'hi': 10.}}
    trials = []

    # Test fmin and ability to continue adding to trials
    best = fmin(loss_fn=f, space=s, max_evals=40, trials=trials)
    best = fmin(loss_fn=f, space=s, max_evals=10, trials=trials)

    assert len(trials) == 50, "HPO continuation trials not working"

    # Test verbose flag
    best = fmin(loss_fn=f, space=s, max_evals=10, trials=trials)

    yarray = np.array([tr['loss'] for tr in trials])
    np.testing.assert_array_less(yarray, 100.)

    xarray = np.array([tr['x'] for tr in trials])
    np.testing.assert_array_less(np.abs(xarray), 10.)

    assert best['loss'] < 100., "HPO out of range"
    assert np.abs(best['x']) < 10., "HPO out of range"

    # Test unknown distributions
    s2 = {'x': {'dist': 'normal', 'mu': 0., 'sigma': 1.}}
    trials2 = []
    with pytest.raises(ValueError) as excinfo:
        fmin(loss_fn=f, space=s2, max_evals=40, trials=trials2)
    assert "Unknown distribution type for variable" in str(excinfo.value)

    s3 = {'x': {'dist': st.norm(loc=0., scale=1.)}}
    trials3 = []
    fmin(loss_fn=f, space=s3, max_evals=40, trials=trials3)
test_model_selection.py 文件源码 项目:dask-ml 作者: dask 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_search_basic(xy_classification):
    X, y = xy_classification
    param_grid = {'class_weight': [None, 'balanced']}

    a = dms.GridSearchCV(SVC(kernel='rbf'), param_grid)
    a.fit(X, y)

    param_dist = {'C': stats.uniform}
    b = dms.RandomizedSearchCV(SVC(kernel='rbf'), param_dist)
    b.fit(X, y)
example_sample_robertson_with_dream.py 文件源码 项目:PyDREAM 作者: LoLab-VU 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def likelihood(parameter_vector):    

    param_dict = {pname: pvalue for pname, pvalue in zip(pysb_sampled_parameter_names, parameter_vector)}

    for pname, pvalue in param_dict.items():

        #Change model parameter values to current location in parameter space

        model.parameters[pname].value = 10**(pvalue)

    #Simulate experimentally measured Ctotal values.

    solver.run()

    #Calculate log probability contribution from simulated experimental values.

    logp_ctotal = np.sum(like_ctot.logpdf(solver.yobs['C_total']))

    #If model simulation failed due to integrator errors, return a log probability of -inf.
    if np.isnan(logp_ctotal):
        logp_ctotal = -np.inf

    return logp_ctotal


# Add vector of PySB rate parameters to be sampled as unobserved random variables to DREAM with uniform priors.
test_models.py 文件源码 项目:PyDREAM 作者: LoLab-VU 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def multidmodel_uniform():
    """Multidimensional model with uniform priors."""

    lower = np.array([-5, -9, 5, 3])
    upper = np.array([10, 0, 7, 8])
    range = upper-lower

    x = SampledParam(uniform, loc=lower, scale=range)
    like =simple_likelihood

    return [x], like
test_utils.py 文件源码 项目:elfi 作者: elfi-dev 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_rvs_prior_ok(self):
        means = [0.8, 0.5]
        weights = [.3, .7]
        N = 10000
        prior_logpdf = ss.uniform(0, 1).logpdf
        rvs = GMDistribution.rvs(means, weights=weights, size=N, prior_logpdf=prior_logpdf)

        # Ensure prior pdf > 0 for all samples
        assert np.all(np.isfinite(prior_logpdf(rvs)))
sampling.py 文件源码 项目:ottertune 作者: cmu-db 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def gen_sample(loc, scale, sample, distribution_type):
    if distribution_type == NORMAL_DISTRIBUTION_TYPE:
        return norm(loc=loc, scale=scale).ppf(sample)
    elif distribution_type == UNIFORM_DISTRIBUTION_TYPE:
        return uniform(loc=loc, scale=scale).ppf(sample)
    else:
        raise Exception("Invalid distribution type: {}"
                        .format(distribution_type))
parameter_tuning.py 文件源码 项目:RIDDLE 作者: jisungk 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def rvs(self, random_state=None):
        if random_state is None:
            gen = uniform(loc=self.lo, scale=self.scale).rvs()
        else:
            gen = uniform(loc=self.lo, scale=self.scale).rvs(random_state=random_state)

        if self.mass_on_zero > 0.0 and np.random.uniform() < self.mass_on_zero:
            return 0.0

        return gen
parameter_tuning.py 文件源码 项目:RIDDLE 作者: jisungk 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def rvs(self, random_state=None):
        if random_state is None:
            exp = uniform(loc=self.lo, scale=self.scale).rvs()
        else:
            exp = uniform(loc=self.lo, scale=self.scale).rvs(random_state=random_state)

        if self.mass_on_zero > 0.0 and np.random.uniform() < self.mass_on_zero:
            return 0.0

        return self.base ** exp
parabola.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, outputs=None, inputs=None, noise=None, rng=None):
        if rng is None:
            rng = gu.gen_rng(1)
        if outputs is None:
            outputs = [0]
        if inputs is None:
            inputs = [1]
        if noise is None:
            noise = .1
        self.rng = rng
        self.outputs = outputs
        self.inputs = inputs
        self.noise = noise
        self.uniform = uniform(loc=-self.noise, scale=2*self.noise)
parabola.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
        assert targets == self.outputs
        assert inputs.keys() == self.inputs
        assert not constraints
        x = inputs[self.inputs[0]]
        u = self.rng.rand()
        noise = self.rng.uniform(low=-self.noise, high=self.noise)
        if u < .5:
            y = x**2 + noise
        else:
            y = -(x**2 + noise)
        return {self.outputs[0]: y}
parabola.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def logpdf(self, rowid, targets, constraints=None, inputs=None):
        assert targets.keys() == self.outputs
        assert inputs.keys() == self.inputs
        assert not constraints
        x = inputs[self.inputs[0]]
        y = targets[self.outputs[0]]
        return logsumexp([
            np.log(.5)+self.uniform.logpdf(y-x**2),
            np.log(.5)+self.uniform.logpdf(-y-x**2)
        ])
sin.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, outputs=None, inputs=None, noise=None, rng=None):
        if rng is None:
            rng = gu.gen_rng(1)
        if outputs is None:
            outputs = [0]
        if inputs is None:
            inputs = [1]
        if noise is None:
            noise = .1
        self.rng = rng
        self.outputs = outputs
        self.inputs = inputs
        self.noise = noise
        self.uniform = uniform(scale=self.noise)
sin.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
        assert targets == self.outputs
        assert inputs.keys() == self.inputs
        assert not constraints
        x = inputs[self.inputs[0]]
        noise = self.rng.uniform(high=self.noise)
        if np.cos(x) < 0:
            y = np.cos(x) + noise
        else:
            y = np.cos(x) - noise
        return {self.outputs[0]: y}
uniformx.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, outputs=None, inputs=None, low=0, high=1, rng=None):
        assert not inputs
        if rng is None:
            rng = gu.gen_rng(0)
        if outputs is None:
            outputs = [0]
        self.rng = rng
        self.low = low
        self.high = high
        self.outputs = outputs
        self.inputs = []
        self.uniform = uniform(loc=self.low, scale=self.high-self.low)
uniformx.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def simulate(self, rowid, targets, constraints=None, inputs=None, N=None):
        assert not constraints
        assert targets == self.outputs
        x = self.rng.uniform(low=self.low, high=self.high)
        return {self.outputs[0]: x}
uniformx.py 文件源码 项目:cgpm 作者: probcomp 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def logpdf(self, rowid, targets, constraints=None, inputs=None):
        assert not constraints
        assert not inputs
        assert targets.keys() == self.outputs
        x = targets[self.outputs[0]]
        return self.uniform.logpdf(x)


问题


面经


文章

微信
公众号

扫码关注公众号