python类spearmanr()的实例源码

utils.py 文件源码 项目:wordsim 作者: recski 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def evaluate(model, dev_data):
    pred = model.predict_proba(dev_data.data, batch_size=32)
    corr = spearmanr(pred, dev_data.labels)
    print "Spearman's R: {0}".format(corr)
data_handler.py 文件源码 项目:pyktrader2 作者: harveywwu 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def ma_ribbon(df, ma_series):
    ma_array = np.zeros([len(df)])
    for idx, ma_len in enumerate(ma_series):
        key = 'EMA_CLOSE_' + str(ma_len)
        ema(df, ma_len, field = 'close')
        ma_array[idx] = df[key][-1]
    corr, pval = stats.spearmanr(ma_array, range(len(ma_series), 0, -1))
    dist = max(ma_array) - min(ma_array)
    df["MARIBBON_CORR"][-1] = corr * 100
    df["MARIBBON_PVAL"][-1] = pval * 100
    df["MARIBBON_DIST"][-1] = dist
knock95.py 文件源码 项目:100knock2016 作者: tmu-nlp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getSpearmanr(infile):
    x_list = list()
    y_list = list()
    for i, line in enumerate(open(infile, 'r')):
        words = line.strip('\n').split('\t')
        x_list.append((i, float(words[2])))
        y_list.append((i, float(words[3])))
    x_list = sorted(x_list, key=lambda x:x[1])
    y_list = sorted(y_list, key=lambda x:x[1])
    x_list = sorted([(x, i) for i, (x, score) in enumerate(x_list)], key=lambda x: x[0])
    y_list = sorted([(y, i) for i, (y, score) in enumerate(y_list)], key=lambda x: x[0])
    x_list, y_list = np.array(x_list), np.array(y_list)
    rho, pval = spearmanr(x_list[:, 1], y_list[:, 1])
    return rho, pval
evaluator.py 文件源码 项目:aes-gated-word-char 作者: unkn0wnxx 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def calc_correl(self, dev_pred, test_pred):
        dev_prs, _ = pearsonr(dev_pred, self.dev_y_org)
        test_prs, _ = pearsonr(test_pred, self.test_y_org)
        dev_spr, _ = spearmanr(dev_pred, self.dev_y_org)
        test_spr, _ = spearmanr(test_pred, self.test_y_org)
        dev_tau, _ = kendalltau(dev_pred, self.dev_y_org)
        test_tau, _ = kendalltau(test_pred, self.test_y_org)
        return dev_prs, test_prs, dev_spr, test_spr, dev_tau, test_tau
utils.py 文件源码 项目:simec 作者: cod3licious 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def check_similarity_match(X_embed, S):
    """
    Since SimEcs are supposed to project the data into an embedding space where the target similarities
    can be linearly approximated, check if X_embed*X_embed^T = S
    (check mean squared error and Spearman correlation coefficient)
    Inputs:
        - X_embed: Nxd matrix with coordinates in the embedding space
        - S: NxN matrix with target similarities (do whatever transformations were done before using this
             as input to the SimEc, e.g. centering, etc.)
    Returns:
        - msq, rho, r: mean squared error, Spearman and Pearson correlation coefficent between linear kernel of embedding
                       and target similarities (mean squared error is more exact, corrcoef a more relaxed error measure)
    """
    # compute linear kernel as approximated similarities
    S_approx = X_embed.dot(X_embed.T)
    # to get results that are comparable across similarity measures, we have to normalize them somehow,
    # in this case by dividing by the absolute max value of the target similarity matrix
    n = np.max(np.abs(S))
    S_norm = S/n
    S_approx /= n
    # compute mean squared error
    msqe = np.mean((S_norm - S_approx) ** 2)
    # compute Spearman correlation coefficient
    rho = spearmanr(S_norm.flatten(), S_approx.flatten())[0]
    # compute Pearson correlation coefficient
    r = pearsonr(S_norm.flatten(), S_approx.flatten())[0]
    return msqe, rho, r
regcorewrapper.py 文件源码 项目:microTC 作者: INGEOTEC 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def compute_score(self, conf, hy):
        conf['_r2'] = r2_score(self.test_y, hy)
        conf['_spearmanr'] = spearmanr(self.test_y, hy)[0]
        conf['_pearsonr'] = pearsonr(self.test_y, hy)[0]
        conf['_score'] = conf['_' + self.score]
        # print(conf)
benchmark.py 文件源码 项目:bear 作者: theeluwin 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def profile(filepath, n, exact=True, save=False, verbose=True, use_gpu=False, report=open('temp.txt', 'w')):
    if exact:
        tol = 0
    else:
        tol = None
    solpath = 'data/{}_sol.dat'.format(filepath2name(filepath))
    if not os.path.isfile(solpath):
        solve(filepath, n, seed=0, verbose=verbose)
    q, r, ranks = pickle.load(open(solpath, 'rb'))
    if use_gpu:
        model_classes = [PPRIterativeTF, PPRLUDecompositionTF, PPRBearTF]
    else:
        model_classes = [PPRIterative, PPRLUDecomposition, PPRBear]
    for model_class in model_classes:
        with tf.Session() as sess:
            start = time.time()
            if use_gpu:
                model = model_class(sess, n, filepath, drop_tol=tol, verbose=verbose)
            else:
                model = model_class(drop_tol=tol, verbose=verbose)
                model.preprocess(filepath)
            end = time.time()
            if use_gpu:
                sess.run(tf.global_variables_initializer())
            elapsed = end - start
            if save:
                model.save('models/{}.ppr'.format(model.alias))
            print("[{}]({},{},n={})".format(model.alias, 'gpu' if use_gpu else 'cpu', 'exact' if exact else 'apprx', n), file=report)
            print("preprocess\t{}".format(elapsed), file=report)
            start = time.time()
            r_ = model.query(q)
            end = time.time()
            elapsed = end - start
            print("query time\t{}".format(elapsed), file=report)
            ranks_ = pr2ranks(r_)
            spearman = spearmanr(ranks, ranks_)
            r_ = r_ / r_.sum()
            print("diff norm\t{}".format(norm(r - r_)), file=report)
            print("cosine sim\t{}".format(r.dot(r_) / norm(r) / norm(r_)), file=report)
            print("spearman corr\t{}".format(spearman.correlation), file=report)
            print("", file=report)
test_analytics.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_corr_rank(self):
        tm._skip_if_no_scipy()

        import scipy
        import scipy.stats as stats

        # kendall and spearman
        A = tm.makeTimeSeries()
        B = tm.makeTimeSeries()
        A[-5:] = A[:5]
        result = A.corr(B, method='kendall')
        expected = stats.kendalltau(A, B)[0]
        self.assertAlmostEqual(result, expected)

        result = A.corr(B, method='spearman')
        expected = stats.spearmanr(A, B)[0]
        self.assertAlmostEqual(result, expected)

        # these methods got rewritten in 0.8
        if scipy.__version__ < LooseVersion('0.9'):
            raise nose.SkipTest("skipping corr rank because of scipy version "
                                "{0}".format(scipy.__version__))

        # results from R
        A = Series(
            [-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -
             0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606])
        B = Series(
            [-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292,
             1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375])
        kexp = 0.4319297
        sexp = 0.5853767
        self.assertAlmostEqual(A.corr(B, method='kendall'), kexp)
        self.assertAlmostEqual(A.corr(B, method='spearman'), sexp)
test_nanops.py 文件源码 项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda 作者: SignalMedia 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def test_nancorr_spearman(self):
        tm.skip_if_no_package('scipy.stats')
        from scipy.stats import spearmanr
        targ0 = spearmanr(self.arr_float_2d, self.arr_float1_2d)[0]
        targ1 = spearmanr(self.arr_float_2d.flat, self.arr_float1_2d.flat)[0]
        self.check_nancorr_nancov_2d(nanops.nancorr, targ0, targ1,
                                     method='spearman')
        targ0 = spearmanr(self.arr_float_1d, self.arr_float1_1d)[0]
        targ1 = spearmanr(self.arr_float_1d.flat, self.arr_float1_1d.flat)[0]
        self.check_nancorr_nancov_1d(nanops.nancorr, targ0, targ1,
                                     method='spearman')
test_chimeras.py 文件源码 项目:nonce2vec 作者: minimalparts 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def spearman(x,y):
    return stats.spearmanr(x, y)[0]



###########################################
# Start
###########################################
layers_ft.py 文件源码 项目:RankIQA 作者: xialeiliu 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def forward(self, bottom, top):
        """Compute the SROCC and LCC and output them to top."""
        #ipdb.set_trace()
        testPreds = bottom[0].data
        testPreds = np.reshape(testPreds,testPreds.shape[0])
        testLabels = bottom[1].data
        testLabels = np.reshape(testLabels,testLabels.shape[0])
        top[0].data[...] = stats.spearmanr(testPreds, testLabels)[0]
        top[1].data[...] = stats.pearsonr(testPreds, testLabels)[0]
pre_analysis.py 文件源码 项目:seq2seq_parser 作者: trangham283 项目源码 文件源码 阅读 52 收藏 0 点赞 0 评论 0
def comp_corr(df, ptype):
    if ptype=='begin':
        valid_df = df[(df.p00 >2)]
    else:
        valid_df = df[(df.p11 >2)]
    lengths = valid_df.span_length.values
    if ptype == 'begin':
        plengths = valid_df.p00.values
    else:
        plengths = valid_df.p11.values
    print float(len(valid_df))/len(df), '\t', stats.spearmanr(plengths, lengths)[0]
models.py 文件源码 项目:ADEM 作者: mike-n-7 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _correlation(self, output, score):
        return  [spearmanr(output, score), pearsonr(output, score)]
asap_evaluator.py 文件源码 项目:nea 作者: nusnlp 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def calc_correl(self, dev_pred, test_pred):
        dev_prs, _ = pearsonr(dev_pred, self.dev_y_org)
        test_prs, _ = pearsonr(test_pred, self.test_y_org)
        dev_spr, _ = spearmanr(dev_pred, self.dev_y_org)
        test_spr, _ = spearmanr(test_pred, self.test_y_org)
        dev_tau, _ = kendalltau(dev_pred, self.dev_y_org)
        test_tau, _ = kendalltau(test_pred, self.test_y_org)
        return dev_prs, test_prs, dev_spr, test_spr, dev_tau, test_tau
experiment_corr_pca_ches.py 文件源码 项目:cptm 作者: NLeSC 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def do_spearmanr(list1, list2, alpha=0.05):
    c, p = spearmanr(list1, list2)

    if p < alpha:
        return c
    return 'n.s.'
knock95.py 文件源码 项目:100knock2017 作者: tmu-nlp 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def calcroh(file_name):
    human_list = list()
    pred_list = list()
    with open(file_name) as i_f:
        for line in i_f:
            human_list.append(line.strip().split()[2])
            pred_list.append(line.strip().split()[3])
    return spearmanr(human_list, pred_list)
knock95.py 文件源码 项目:100knock2017 作者: tmu-nlp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cal_spear(text):
    list_1 = []
    list_2 = []
    with open(text) as i_f:
        for line in i_f:
            list_1.append(line.strip().split()[2])
            list_2.append(line.strip().split()[3])
    return spearmanr(list_1,list_2)
generate_ngram_indicator.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def generate_indicator_(gram_q1,gram_q2,N):
    len_gram_q1 = list(map(len,gram_q1))
    len_gram_q2 = list(map(len,gram_q2))
    max_len = max(max(len_gram_q1),max(len_gram_q2))
    q1_indicator = np.zeros((N,max_len))
    q2_indicator = np.zeros((N,max_len))
    for i in tqdm(np.arange(N)):
        for j,w in enumerate(gram_q1[i]):
            if w in gram_q2[i]:
                q1_indicator[i,j] = 1
        for j,w in enumerate(gram_q2[i]):
            if w in gram_q1[i]:
                q2_indicator[i,j] = 1
    return q1_indicator,q2_indicator
    # sps.spearmanr(q1_indicator[:,1],y_train)[0]
generate_neighbor_dis.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def calc_dis_jarccard2(neighs,neighs2):
    sim_fea = []
    for i in neighs:
        for j in neighs2:
            if i==j:continue
            if (j in index_q) and (i in index_q):
                q_str = index_q[i]
                nei_str = index_q[j]
                s1 = set(q_str.lower().split())
                s2 = set(nei_str.lower().split())
                sim_fea.append(dist_utils._jaccard_coef(s1, s2))
    aggregation_mode = ["mean", "std", "max", "min", "median"]
    aggregator = [None if m == "" else getattr(np, m) for m in aggregation_mode]
    score = []
    for n, agg in enumerate(aggregator):
        if len(sim_fea) == 0:
            s = -1
        try:
            s = agg(sim_fea)
        except:
            s = -1
        score.append(s)
    return score


# sps.spearmanr(train_fea,train['is_duplicate'])[0]
generate_ngram_bleu.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def drop_feature(data):
    drop_list = []
    for i in range(data.shape[1]):
        for j in range(i,data.shape[1]):
            s = sps.spearmanr(data[:,i],data[:,j])[0]
            if abs(s)>0.8:
                drop_list.append(j)
    drop_list = set(drop_list)
    return  drop_list


#select imp feature


问题


面经


文章

微信
公众号

扫码关注公众号