python类expit()的实例源码

regression_stealer.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def logistic_grad_bin(w, X, Y, alpha):
    """
    Implementation of the logistic loss gradient when Y is a binary probability
    distribution.
    """
    grad = np.empty_like(w)
    n_classes = Y.shape[1]
    n_features = X.shape[1]
    fit_intercept = w.size == (n_features + 1)

    if fit_intercept:
        intercept = w[-1]
        w = w[:-1]
    else:
        intercept = 0

    z = safe_sparse_dot(X, w.T) + intercept

    _, n_features = X.shape
    z0 = - (Y[:, 1] + (expit(-z) - 1))

    grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w

    if fit_intercept:
        grad[-1] = z0.sum()

    return grad.flatten()
LRSolver.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def predict(self, x):
        _x = np.ones((x.shape[0], x.shape[1] + 1))
        _x[:, : - 1] = x
        score = expit(np.inner(self.w, _x))
        signs = np.sign(score - .5)
        return [0 if x == -1 else 1 for x in signs]
nn.py 文件源码 项目:othello-rl 作者: jpypi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def activation(x):
    #return expit(x)
    ##return 1.7159 * math.tanh(2/3*x)
    #print(x)

    return np.tanh(x)#list(map(math.tanh, x))
    #return np.multiply(x > 0, x)
nn.py 文件源码 项目:othello-rl 作者: jpypi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def dactivation(x):
    #v = expit(x)
    #return v*(1-v)
    #return 1 - math.tanh(x)**2

    return 1 - np.tanh(x)**2#list(map(lambda y: 1 - math.tanh(y)**2, x))
    #return np.float64(x > 0)
word2vec.py 文件源码 项目:nonce2vec 作者: minimalparts 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def train_cbow_pair(model, word, input_word_indices, l1, alpha, learn_vectors=True, learn_hidden=True):
    neu1e = zeros(l1.shape)

    if model.hs:
        l2a = model.syn1[word.point]  # 2d matrix, codelen x layer1_size
        fa = expit(dot(l1, l2a.T))  # propagate hidden -> output
        ga = (1. - word.code - fa) * alpha  # vector of error gradients multiplied by the learning rate
        if learn_hidden:
            model.syn1[word.point] += outer(ga, l1)  # learn hidden -> output
        neu1e += dot(ga, l2a)  # save error

    if model.negative:
        # use this word (label = 1) + `negative` other random words not from this sentence (label = 0)
        word_indices = [word.index]
        while len(word_indices) < model.negative + 1:
            w = model.cum_table.searchsorted(model.random.randint(model.cum_table[-1]))
            if w != word.index:
                word_indices.append(w)
        l2b = model.syn1neg[word_indices]  # 2d matrix, k+1 x layer1_size
        fb = expit(dot(l1, l2b.T))  # propagate hidden -> output
        gb = (model.neg_labels - fb) * alpha  # vector of error gradients multiplied by the learning rate
        if learn_hidden:
            model.syn1neg[word_indices] += outer(gb, l1)  # learn hidden -> output
        neu1e += dot(gb, l2b)  # save error

    if learn_vectors:
        # learn input -> hidden, here for all words in the window separately
        if not model.cbow_mean and input_word_indices:
            neu1e /= len(input_word_indices)
        for i in input_word_indices:
            model.wv.syn0[i] += neu1e * model.syn0_lockf[i]

    return neu1e
Autoencoder.py 文件源码 项目:RBM_AE 作者: lingxuez 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def predict_x_mean(self, noisy_data_x, noise_prob=0):
        """
        Calculate the predicted mean given input data_x.
        :param data_x: binary input with dimension (dim_input, 1)
        """
        ## hidden layer
        h = expit(self.bias_hidden + self.W.dot(noisy_data_x))
        ## predicted x
        x_mean = expit(self.bias_input + self.W.transpose().dot(h))

        return (h, x_mean)
NNnode.py 文件源码 项目:RBM_AE 作者: lingxuez 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def activate(aValue):
        """
        activate function: sigmoid
        g(a) = 1/(1+exp(-a)); same dimension as aValue
        """
        return special.expit(aValue)
RBM.py 文件源码 项目:RBM_AE 作者: lingxuez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def energy_gradient(self, x):
        """
        Calculate the (estimated) gradient of energy E(h, x) at given x,
        with respect to W, bias_input, bias_hidden at current values.
        :param x: input vector with shape (dim_input, 1)
        """
        h_mean = expit(self.bias_hidden + self.W.dot(x))
        grad_W = -h_mean.dot(x.transpose())
        grad_bias_input = -x
        grad_bias_hidden = -h_mean

        return (grad_W, grad_bias_input, grad_bias_hidden)
RBM.py 文件源码 项目:RBM_AE 作者: lingxuez 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def gibbs_sample_h(self, x):
        """
        Sample a new h from p(h|x) using current parameters.
        :param x: shape (dim_input, 1)
        :return: shape (dim_hidden, 1)
        """
        h_mean = expit(self.bias_hidden + self.W.dot(x))
        return self.bernoulli(h_mean)
RBM.py 文件源码 项目:RBM_AE 作者: lingxuez 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def gibbs_sample_x(self, h):
        """
        Sample a new x from p(x|h) using current parameters.
        :param h: shape (dim_hidden, 1)
        :return: shape (dim_input, 1)
        """
        x_mean = expit(self.bias_input + self.W.transpose().dot(h))
        return self.bernoulli(x_mean)
LogClustering_HDFS.py 文件源码 项目:loglizer 作者: logpai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def computeWeight(rawData,numEvents):
    # to avoid the case that a term never occurs in a document, we add 1 to the cnt
    numLines,numEvents=rawData.shape
    weightedData=np.zeros((numLines,numEvents),float)
    for j in range(numEvents):
        cnt = np.count_nonzero(rawData[:,j])
        for i in range(numLines):
            weight = 0.5 * expit(math.log(numLines/float(cnt)))
            weightedData[i,j] = rawData[i,j] * weight
    print('weighted data size is',weightedData.shape)
    return weightedData
LogClustering_BGL.py 文件源码 项目:loglizer 作者: logpai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def computeWeight(rawData):
    # to avoid the case that a term never occurs in a document, we add 1 to the cnt
    numLines,numEvents=rawData.shape
    weightedData=np.zeros((numLines,numEvents),float)
    for j in range(numEvents):
        cnt = np.count_nonzero(rawData[:,j])
        for i in range(numLines):
            weight = 0.5 * expit(math.log(numLines/float(cnt)))
            weightedData[i,j] = rawData[i,j] * weight
    print('weighted data size is',weightedData.shape)
    return weightedData
retina.py 文件源码 项目:pulse2percept 作者: uwescience 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def stationary_nonlinearity(self, stim):
        """Stationary nonlinearity

        Nonlinearly rescale a temporal signal `stim` across space and time,
        based on a sigmoidal function dependent on the maximum value of `stim`.
        This is Box 4 in Nanduri et al. (2012).
        The parameter values of the asymptote, slope, and shift of the logistic
        function are given by self.asymptote, self.slope, and self.shift,
        respectively.

        Parameters
        ----------
        stim: array
           Temporal signal to process, stim(r, t) in Nanduri et al. (2012).

        Returns
        -------
        Rescaled signal, b4(r, t) in Nanduri et al. (2012).

        Notes
        -----
        Conversion to TimeSeries is avoided for the sake of speedup.
        """
        # use expit (logistic) function for speedup
        sigmoid = ss.expit((stim.max() - self.shift) / self.slope)
        return stim * sigmoid
neural_network.py 文件源码 项目:prml 作者: Yevgnen 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def sigmoid(a):
    h = expit(a)

    return h, h * (1 - h)
embedding.py 文件源码 项目:nodeembedding-to-communityembedding 作者: andompesta 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def gradient_update(positive_node_embedding, negative_nodes_embedding, neg_labels, _alpha):
        '''
          Perform stochastic gradient descent of the first and second order embedding.
          NOTE: using the cython implementation (fast_community_sdg_X) is much more fast
        '''
        fb = sigmoid(np.dot(positive_node_embedding, negative_nodes_embedding.T))  #  propagate hidden -> output
        gb = (neg_labels - fb) * _alpha# vector of error gradients multiplied by the learning rate
        return gb
node_embeddings.py 文件源码 项目:nodeembedding-to-communityembedding 作者: andompesta 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def loss(self, model, edges):
        ret_loss = 0
        for edge in prepare_sentences(model, edges):
            assert len(edge) == 2, "edges have to be done by 2 nodes :{}".format(edge)
            ret_loss -= np.log(sigmoid(np.dot(model.node_embedding[edge[1].index], model.node_embedding[edge[0].index].T)))
        return ret_loss
gbm.py 文件源码 项目:MLAlgorithms 作者: rushter 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def grad(self, actual, predicted):
        return actual * expit(-actual * predicted)
gbm.py 文件源码 项目:MLAlgorithms 作者: rushter 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def hess(self, actual, predicted):
        expits = expit(predicted)
        return expits * (1 - expits)
gbm.py 文件源码 项目:MLAlgorithms 作者: rushter 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def transform(self, output):
        # Apply logistic (sigmoid) function to the output
        return expit(output)
predict.py 文件源码 项目:singing_horse 作者: f0k 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def sigmoid(x, out):
        if out is not x:
            out[:] = x
        np.negative(out, out)
        np.exp(out, out)
        out += 1
        np.reciprocal(out, out)
        return out


问题


面经


文章

微信
公众号

扫码关注公众号