python类gaussian_filter()的实例源码

preprocess.py 文件源码 项目:pypiv 作者: jr7 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def highpass_filter(img, sigma=3):
    lowpass = gaussian_filter(img, 3)
    return img - lowpass
image_ocr.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def speckle(img):
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0
    return img_speck


# paints the string in a random location the bounding box
# also uses a random font, a slight random rotation,
# and a random amount of speckle noise
sk_tiles.py 文件源码 项目:piwall-cvtools 作者: infinnovation 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def canny_demo():
    # Generate noisy image of a square
    im = np.zeros((128, 128))
    im[32:-32, 32:-32] = 1

    im = ndi.rotate(im, 15, mode='constant')
    im = ndi.gaussian_filter(im, 4)
    im += 0.2 * np.random.random(im.shape)

    # Compute the Canny filter for two values of sigma
    edges1 = feature.canny(im)
    edges2 = feature.canny(im, sigma=3)

    # display results
    fig, (ax1, ax2, ax3) = plt.subplots(nrows=1, ncols=3, figsize=(8, 3),
                                        sharex=True, sharey=True)

    ax1.imshow(im, cmap=plt.cm.gray)
    ax1.axis('off')
    ax1.set_title('noisy image', fontsize=20)

    ax2.imshow(edges1, cmap=plt.cm.gray)
    ax2.axis('off')
    ax2.set_title('Canny filter, $\sigma=1$', fontsize=20)

    ax3.imshow(edges2, cmap=plt.cm.gray)
    ax3.axis('off')
    ax3.set_title('Canny filter, $\sigma=3$', fontsize=20)

    fig.tight_layout()

    plt.show()
veros-create-mask.py 文件源码 项目:veros 作者: dionhaefner 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def smooth_image(data, sigma):
    from scipy import ndimage
    return ndimage.gaussian_filter(data, sigma=sigma)
image_ocr.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def speckle(img):
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0
    return img_speck


# paints the string in a random location the bounding box
# also uses a random font, a slight random rotation,
# and a random amount of speckle noise
pyramids_3d.py 文件源码 项目:Vessel3DDL 作者: konopczynski 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _smooth(image, sigma, mode, cval):
    """Return image with each channel smoothed by the Gaussian filter."""
    smoothed = np.empty(image.shape, dtype=np.double)
    # apply Gaussian filter to all dimensions independently
    if image.ndim == 3:
        for dim in range(image.shape[2]):
            ndi.gaussian_filter(image[..., dim], sigma,
                                output=smoothed[..., dim],
                                mode=mode, cval=cval)
    else:
        ndi.gaussian_filter(image, sigma, output=smoothed,
                            mode=mode, cval=cval)
    return smoothed
pyramids_3d.py 文件源码 项目:Vessel3DDL 作者: konopczynski 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _smooth_3d(volume, sigma, mode, cval):
    """Return volume with each channel smoothed by the Gaussian filter."""
    smoothed = np.empty(volume.shape, dtype=np.double)
    # apply Gaussian filter to all dimensions independently
    # volume.ndim == 4 means the volume is multimodal
    if volume.ndim == 4:
        # compute 3d convolution for each modality, dim is a modality
        for dim in range(volume.shape[3]):
            ndi.gaussian_filter(volume[..., dim], sigma,
                                output=smoothed[..., dim],
                                mode=mode, cval=cval)
    else:
        ndi.gaussian_filter(volume, sigma, output=smoothed, mode=mode, cval=cval)
    return smoothed
thaanaocr.py 文件源码 项目:thaanaOCR 作者: Sofwath 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def speckle(img):
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0
    return img_speck
ufig_util.py 文件源码 项目:tf_unet 作者: jakeret 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _load_data(self):
        with h5py.File(self.path, "r") as fp:
            self.image = gaussian_filter(fp["image"].value, self.sigma)
            self.gal_map = fp["segmaps/galaxy"].value
            self.star_map = fp["segmaps/star"].value
input_utils.py 文件源码 项目:cellstar 作者: Fafa87 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def finish_image(img):
    img = image.gaussian_filter(img, 3)
    img = img + np.random.normal(0, 0.01, img.shape)
    return img
__init__.py 文件源码 项目:scanify 作者: idf 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __blur(self, img):
        """
        Gaussian blur
        """
        print("Gaussian Filtering")
        return ndimage.gaussian_filter(img, sigma=50)
preprocessor_eval.py 文件源码 项目:HandwritingRecognition 作者: eng-tsmith 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def random_noise(img):  #TODO dataug
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0
    return img_speck
preprocessor.py 文件源码 项目:HandwritingRecognition 作者: eng-tsmith 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def random_noise(img):  #TODO dataug
    """
    Puts random noise on image
    :param img: image without noise
    :return: image with noise
    """
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0

    return img_speck
image_ocr.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def speckle(img):
    severity = np.random.uniform(0, 0.6)
    blur = ndimage.gaussian_filter(np.random.randn(*img.shape) * severity, 1)
    img_speck = (img + blur)
    img_speck[img_speck > 1] = 1
    img_speck[img_speck <= 0] = 0
    return img_speck


# paints the string in a random location the bounding box
# also uses a random font, a slight random rotation,
# and a random amount of speckle noise
CancerImageAnalyzer.py 文件源码 项目:CancerImageAnalyzer2 作者: byeungchun 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def execGaussianFiltering(rawImgFloat):
    filteredImg = gaussian_filter(rawImgFloat, 1)
    seed = np.copy(filteredImg)
    seed[1:-1, 1:-1] = filteredImg.min()
    return filteredImg
generate_simple_template_phantoms.py 文件源码 项目:LabelsManager 作者: SebastianoF 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def apply_laplacian_filter(array, alpha=30):
    """
    Laplacian is approximated with difference of Gaussian
    :param array:
    :param alpha:
    :return:
    """
    blurred_f = ndimage.gaussian_filter(array, 3)
    filter_blurred_f = ndimage.gaussian_filter(blurred_f, 1)
    return blurred_f + alpha * (blurred_f - filter_blurred_f)
show_images.py 文件源码 项目:CNNbasedMedicalSegmentation 作者: BRML 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def sharpen(blurred_im, alpha):
    filter_blurred_im = ndi.gaussian_filter(blurred_im, 1)
    sharp = blurred_im + alpha * (blurred_im - filter_blurred_im)

    return sharp
visualizers.py 文件源码 项目:PyNIT 作者: dvm-shlee 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def check_reg(fixed_img, moved_img, scale=15, norm=True, sigma=0.8, **kwargs):
        dim = list(moved_img.shape)
        resol = list(moved_img.header['pixdim'][1:4])
        # Convert 4D image to 3D or raise error
        data = convert_to_3d(moved_img)
        # Check normalization
        if norm:
            data = apply_p2_98(data)
        # Set slice axis for mosaic grid
        slice_axis, cmap = check_sliceaxis_cmap(data, kwargs)
        cmap = 'YlOrRd'
        # Set grid shape
        data, slice_grid, size = set_mosaic_fig(data, dim, resol, slice_axis, scale)
        fig, axes = BrainPlot.mosaic(fixed_img, scale=scale, norm=norm, cmap='bone', **kwargs)
        # Applying inversion
        invert = check_invert(kwargs)
        data = apply_invert(data, *invert)
        # Plot image
        for i in range(slice_grid[1] * slice_grid[2]):
            ax = axes.flat[i]
            edge = data[:, :, i]
            edge = feature.canny(edge, sigma=sigma)  # edge detection for second image
            # edge = ndimage.gaussian_filter(edge, 3)
            mask = np.ones(edge.shape)
            sx = ndimage.sobel(edge, axis=0, mode='constant')
            sy = ndimage.sobel(edge, axis=1, mode='constant')
            sob = np.hypot(sx, sy)
            mask[sob == False] = np.nan
            m_norm = colors.Normalize(vmin=0, vmax=1.5)
            if i < slice_grid[0] and False in np.isnan(mask.flatten()):
                ax.imshow(mask.T, origin='lower', interpolation='nearest', cmap=cmap, norm=m_norm, alpha=0.8)
            else:
                ax.imshow(np.zeros((dim[0], dim[1])).T, origin='lower', interpolation='nearest', cmap='bone')
            ax.set_axis_off()
        fig.set_facecolor('black')
        if notebook_env:
            display(fig)
        return fig, axes
word_renderer.py 文件源码 项目:text-renderer 作者: cjnolet 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def sample_transformation(self, imsz):
        choices = len(self.alpha_dist)
        c = int(n.random.randint(0, choices))
        sigma = max(self.min_sigma[c], n.abs(self.sigma[c][1]*n.random.randn() + self.sigma[c][0]))
        alpha = n.random.uniform(self.alpha_dist[c][0], self.alpha_dist[c][1])
        dispmapx = n.random.uniform(-1*self.displacement_range, self.displacement_range, size=imsz)
        dispmapy = n.random.uniform(-1*self.displacement_range, self.displacement_range, size=imsz)
        dispmapx = alpha * ndimage.gaussian_filter(dispmapx, sigma)
        dispmaxy = alpha * ndimage.gaussian_filter(dispmapy, sigma)
        return dispmapx, dispmaxy
word_renderer.py 文件源码 项目:text-renderer 作者: cjnolet 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def surface_distortions(self, arr):
        ds = self.surfdiststate.get_sample()
        blur = ds['blur']

        origarr = arr.copy()
        arr = n.minimum(n.maximum(0, arr + n.random.normal(0, ds['noise'], arr.shape)), 255)
        # make some changes to the alpha
        arr[...,1] = ndimage.gaussian_filter(arr[...,1], ds['blur'])
        ds = self.surfdiststate.get_sample()
        arr[...,0] = ndimage.gaussian_filter(arr[...,0], ds['blur'])
        if ds['sharpen']:
            newarr_ = ndimage.gaussian_filter(origarr[...,0], blur/2)
            arr[...,0] = arr[...,0] + ds['sharpen_amount']*(arr[...,0] - newarr_)

        return arr


问题


面经


文章

微信
公众号

扫码关注公众号