def extract(image,y0,x0,y1,x1,mode='nearest',cval=0):
h,w = image.shape
ch,cw = y1-y0,x1-x0
y,x = clip(y0,0,max(h-ch,0)),clip(x0,0,max(w-cw, 0))
sub = image[y:y+ch,x:x+cw]
# print("extract", image.dtype, image.shape)
try:
r = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
if cw > w or ch > h:
pady0, padx0 = max(-y0, 0), max(-x0, 0)
r = interpolation.affine_transform(r, eye(2), offset=(pady0, padx0), cval=1, output_shape=(ch, cw))
return r
except RuntimeError:
# workaround for platform differences between 32bit and 64bit
# scipy.ndimage
dtype = sub.dtype
sub = array(sub,dtype='float64')
sub = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
sub = array(sub,dtype=dtype)
return sub
python类affine_transform()的实例源码
04_create_patches_cancer_pred_anno.py 文件源码
项目:kaggle-lung-cancer
作者: mdai
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def random_rotation(volume, rotation):
theta_x = np.pi / 180 * np.random.uniform(-rotation, rotation)
theta_y = np.pi / 180 * np.random.uniform(-rotation, rotation)
theta_z = np.pi / 180 * np.random.uniform(-rotation, rotation)
rotation_matrix_x = np.array([[1, 0, 0],
[0, np.cos(theta_x), -np.sin(theta_x)],
[0, np.sin(theta_x), np.cos(theta_x)]])
rotation_matrix_y = np.array([[np.cos(theta_y), 0, np.sin(theta_y)],
[0, 1, 0],
[-np.sin(theta_y), 0, np.cos(theta_y)]])
rotation_matrix_z = np.array([[np.cos(theta_z), -np.sin(theta_z), 0],
[np.sin(theta_z), np.cos(theta_z), 0],
[0, 0, 1]])
transform_matrix = np.dot(np.dot(rotation_matrix_x, rotation_matrix_y), rotation_matrix_z)
volume_rotated = affine_transform(volume, transform_matrix, mode='nearest')
return volume_rotated
def extract(image,y0,x0,y1,x1,mode='nearest',cval=0):
h,w = image.shape
ch,cw = y1-y0,x1-x0
y,x = clip(y0,0,max(h-ch,0)),clip(x0,0,max(w-cw, 0))
sub = image[y:y+ch,x:x+cw]
# print("extract", image.dtype, image.shape)
try:
r = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
if cw > w or ch > h:
pady0, padx0 = max(-y0, 0), max(-x0, 0)
r = interpolation.affine_transform(r, eye(2), offset=(pady0, padx0), cval=1, output_shape=(ch, cw))
return r
except RuntimeError:
# workaround for platform differences between 32bit and 64bit
# scipy.ndimage
dtype = sub.dtype
sub = array(sub,dtype='float64')
sub = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
sub = array(sub,dtype=dtype)
return sub
def extract(image,y0,x0,y1,x1,mode='nearest',cval=0):
h,w = image.shape
ch,cw = y1-y0,x1-x0
y,x = clip(y0,0,max(h-ch,0)),clip(x0,0,max(w-cw, 0))
sub = image[y:y+ch,x:x+cw]
# print("extract", image.dtype, image.shape)
try:
r = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
if cw > w or ch > h:
pady0, padx0 = max(-y0, 0), max(-x0, 0)
r = interpolation.affine_transform(r, eye(2), offset=(pady0, padx0), cval=1, output_shape=(ch, cw))
return r
except RuntimeError:
# workaround for platform differences between 32bit and 64bit
# scipy.ndimage
dtype = sub.dtype
sub = array(sub,dtype='float64')
sub = interpolation.shift(sub,(y-y0,x-x0),mode=mode,cval=cval,order=0)
sub = array(sub,dtype=dtype)
return sub
def scale_to_h(img,target_height,order=1,dtype=dtype('f'),cval=0):
h,w = img.shape
scale = target_height*1.0/h
target_width = int(scale*w)
output = interpolation.affine_transform(1.0*img,eye(2)/scale,order=order,
output_shape=(target_height,target_width),
mode='constant',cval=cval)
output = array(output,dtype=dtype)
return output
def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.):
x = np.rollaxis(x, channel_index, 0)
final_affine_matrix = transform_matrix[:2, :2]
final_offset = transform_matrix[:2, 2]
channel_images = [affine_transform(x_channel, final_affine_matrix,
final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x]
x = np.stack(channel_images, axis=0)
x = np.rollaxis(x, 0, channel_index+1)
return x
def scale_to_h(img,target_height,order=1,dtype=dtype('f'),cval=0):
h,w = img.shape
scale = target_height*1.0/h
target_width = int(scale*w)
output = interpolation.affine_transform(1.0*img,eye(2)/scale,order=order,
output_shape=(target_height,target_width),
mode='constant',cval=cval)
output = array(output,dtype=dtype)
return output
def scale_to_h(img,target_height,order=1,dtype=dtype('f'),cval=0):
h,w = img.shape
scale = target_height*1.0/h
target_width = int(scale*w)
output = interpolation.affine_transform(1.0*img,eye(2)/scale,order=order,
output_shape=(target_height,target_width),
mode='constant',cval=cval)
output = array(output,dtype=dtype)
return output
def transform(self, translation, theta, method='opencv'):
"""Create a new image by translating and rotating the current image.
Parameters
----------
translation : :obj:`numpy.ndarray` of float
The XY translation vector.
theta : float
Rotation angle in radians, with positive meaning counter-clockwise.
method : :obj:`str`
Method to use for image transformations (opencv or scipy)
Returns
-------
:obj:`Image`
An image of the same type that has been rotated and translated.
"""
theta = np.rad2deg(theta)
trans_map = np.float32(
[[1, 0, translation[1]], [0, 1, translation[0]]])
rot_map = cv2.getRotationMatrix2D(
(self.center[1], self.center[0]), theta, 1)
trans_map_aff = np.r_[trans_map, [[0, 0, 1]]]
rot_map_aff = np.r_[rot_map, [[0, 0, 1]]]
full_map = rot_map_aff.dot(trans_map_aff)
full_map = full_map[:2, :]
if method == 'opencv':
im_data_tf = cv2.warpAffine(
self.data, full_map, (self.width, self.height), flags=cv2.INTER_NEAREST)
else:
im_data_tf = sni.affine_transform(self.data,
matrix=full_map[:, :2],
offset=full_map[:, 2],
order=0)
return type(self)(
im_data_tf.astype(
self.data.dtype),
frame=self._frame)
def applyLinearTransformToImage(self, image, angle, shear_x, shear_y, scale, size_out):
'''Apply the image transformation specified by three parameters.
Time it takes warping a 256 x 256 RGB image with various affine warping functions:
* 0.25ms cv2.warpImage, nearest interpolation
* 0.26ms cv2.warpImage, linear interpolation
* 5.11ms ndii.affine_transform, order=0
* 5.93ms skimage.transform._warps_cy._warp_fast, linear interpolation
Args:
x: 2D numpy array, a single image.
angle: Angle by which the image is rotated.
shear_x: Shearing factor along the x-axis by which the image is sheared.
shear_y: Shearing factor along the x-axis by which the image is sheared.
scale: Scaling factor by which the image is scaled.
channel_axis: Index of axis for channels in the input tensor.
Returns:
A tuple of transformed version of the input and the correction scale factor.
'''
# Positions of the image center before and after the transformation in
# pixel coordinates.
s_out = (size_out, size_out)
c_in = .5 * np.asarray(image.shape[:2], dtype=np.float64).reshape((2, 1))
c_out = .5 * np.asarray(s_out, dtype=np.float64).reshape((2, 1))
angle = -angle
M_rot_inv = np.asarray([[math.cos(angle), -math.sin(angle)], \
[math.sin(angle), math.cos(angle)]])
M_shear_inv = (1. / (shear_x * shear_y - 1.)) \
* np.asarray([[-1., shear_x], [shear_y, -1.]])
M_inv = np.dot(M_shear_inv, M_rot_inv) # First undo rotation, then shear.
M_inv /= scale
offset = c_in - np.dot(M_inv, c_out)
# cv2.warpAffine transform according to dst(p) = src(M_inv * p + offset).
# No need to reverse the channels because the channels are interpolated
# separately.
warped = cv2.warpAffine(image, np.concatenate((M_inv, offset), axis=1), s_out,
flags=cv2.INTER_LANCZOS4 | cv2.WARP_INVERSE_MAP)
# flags=cv2.INTER_CUBIC | cv2.WARP_INVERSE_MAP)
return warped
def augment(images):
pixels = images[0].shape[1]
center = pixels/2.-0.5
random_flip_x = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1
random_flip_y = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1
# Translation shift
shift_x = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
shift_y = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
rotation_degrees = np.random.uniform(*P.AUGMENTATION_PARAMS['rotation_range'])
zoom_factor = np.random.uniform(*P.AUGMENTATION_PARAMS['zoom_range'])
#zoom_factor = 1 + (zoom_f/2-zoom_f*np.random.random())
if CV2_AVAILABLE:
M = cv2.getRotationMatrix2D((center, center), rotation_degrees, zoom_factor)
M[0, 2] += shift_x
M[1, 2] += shift_y
for i in range(len(images)):
image = images[i]
if CV2_AVAILABLE:
#image = image.transpose(1,2,0)
image = cv2.warpAffine(image, M, (pixels, pixels))
if random_flip_x:
image = cv2.flip(image, 0)
if random_flip_y:
image = cv2.flip(image, 1)
#image = image.transpose(2,0,1)
images[i] = image
else:
if random_flip_x:
#image = image.transpose(1,0)
image[:,:] = image[::-1,:]
#image = image.transpose(1,0)
if random_flip_y:
image = image.transpose(1,0)
image[:,:] = image[::-1,:]
image = image.transpose(1,0)
rotate(image, rotation_degrees, reshape=False, output=image)
#image2 = zoom(image, [zoom_factor,zoom_factor])
image2 = crop_or_pad(image, pixels, -3000)
shift(image2, [shift_x,shift_y], output=image)
#affine_transform(image, np.array([[zoom_x,0], [0,zoom_x]]), output=image)
#z = AffineTransform(scale=(2,2))
#image = warp(image, z.params)
images[i] = image
return images
def augment(images):
pixels = images[0].shape[1]
center = pixels/2.-0.5
random_flip_x = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1
random_flip_y = P.AUGMENTATION_PARAMS['flip'] and np.random.randint(2) == 1
# Translation shift
shift_x = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
shift_y = np.random.uniform(*P.AUGMENTATION_PARAMS['translation_range'])
rotation_degrees = np.random.uniform(*P.AUGMENTATION_PARAMS['rotation_range'])
zoom_factor = np.random.uniform(*P.AUGMENTATION_PARAMS['zoom_range'])
#zoom_factor = 1 + (zoom_f/2-zoom_f*np.random.random())
if CV2_AVAILABLE:
M = cv2.getRotationMatrix2D((center, center), rotation_degrees, zoom_factor)
M[0, 2] += shift_x
M[1, 2] += shift_y
for i in range(len(images)):
image = images[i]
if CV2_AVAILABLE:
#image = image.transpose(1,2,0)
image = cv2.warpAffine(image, M, (pixels, pixels))
if random_flip_x:
image = cv2.flip(image, 0)
if random_flip_y:
image = cv2.flip(image, 1)
#image = image.transpose(2,0,1)
images[i] = image
else:
if random_flip_x:
#image = image.transpose(1,0)
image[:,:] = image[::-1,:]
#image = image.transpose(1,0)
if random_flip_y:
image = image.transpose(1,0)
image[:,:] = image[::-1,:]
image = image.transpose(1,0)
rotate(image, rotation_degrees, reshape=False, output=image)
#image2 = zoom(image, [zoom_factor,zoom_factor])
image2 = crop_or_pad(image, pixels, -3000)
shift(image2, [shift_x,shift_y], output=image)
#affine_transform(image, np.array([[zoom_x,0], [0,zoom_x]]), output=image)
#z = AffineTransform(scale=(2,2))
#image = warp(image, z.params)
images[i] = image
return images