python类imsave()的实例源码

unet.py 文件源码 项目:neural-fonts 作者: periannath 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def validate_model(self, val_iter, epoch, step):
        labels, codes, images = next(val_iter)
        fake_imgs, real_imgs, d_loss, g_loss, l1_loss = self.generate_fake_samples(images, labels)
        print("Sample: d_loss: %.5f, g_loss: %.5f, l1_loss: %.5f" % (d_loss, g_loss, l1_loss))

        merged_fake_images = merge(scale_back(fake_imgs), [self.batch_size, 1])
        merged_real_images = merge(scale_back(real_imgs), [self.batch_size, 1])
        merged_pair = np.concatenate([merged_real_images, merged_fake_images], axis=1)

        model_id, _ = self.get_model_id_and_dir()

        model_sample_dir = os.path.join(self.sample_dir, model_id)
        if not os.path.exists(model_sample_dir):
            os.makedirs(model_sample_dir)

        sample_img_path = os.path.join(model_sample_dir, "sample_%02d_%04d.png" % (epoch, step))
        misc.imsave(sample_img_path, merged_pair)
generate.py 文件源码 项目:latplan 作者: guicho271828 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def generate(p, ics, gcs, *args):
    from scipy import misc
    import subprocess
    import datetime
    inits = p.generate(np.array(ics),*args)
    goals = p.generate(np.array(gcs),*args)
    for noise_fn,output_dir in zip(noise_fns,output_dirs):
        inits = noise_fn(inits)
        goals = noise_fn(goals)
        for i,init in enumerate(inits):
            for j,goal in enumerate(goals):
                d = "{}/{}/{:03d}-{:03d}-{:03d}".format(output_dir,p.__name__,steps,i,j)
                try:
                    subprocess.call(["mv",d,d+"_old_"+datetime.datetime.today().isoformat()])
                except:
                    pass
                os.makedirs(d)
                print(d)
                misc.imsave(os.path.join(d,"init.png"),init)
                misc.imsave(os.path.join(d,"goal.png"),goal)

################################################################
kitti_new.py 文件源码 项目:learning-to-see-by-moving 作者: pulkitag 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def resize_images(prms):
    seqNum = range(11)
    rawStr = ['rawLeftImFile', 'rawRightImFile']
    imStr  = ['leftImFile', 'rightImFile']
    num    = ku.get_num_images()
    for raw, new in zip(rawStr, imStr):
        for seq in seqNum:
            N = num[seq]
            print seq, N, raw, new
            rawNames = [prms['paths'][raw] % (seq,i) for i in range(N)]          
            newNames = [prms['paths'][new] % (seq,i) for i in range(N)]
            dirName = os.path.dirname(newNames[0])
            if not os.path.exists(dirName):
                os.makedirs(dirName)
            for rawIm, newIm in zip(rawNames, newNames):
                im = scm.imread(rawIm)
                im = scm.imresize(im, [256, 256])   
                scm.imsave(newIm, im)

##
# Save images as jpgs.
kitti_new.py 文件源码 项目:learning-to-see-by-moving 作者: pulkitag 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def save_as_jpg(prms):
    seqNum = range(11)
    rawStr = ['rawLeftImFile', 'rawRightImFile']
    imStr  = ['leftImFile', 'rightImFile']
    num    = ku.get_num_images()
    for raw, new in zip(rawStr, imStr):
        for seq in seqNum:
            N = num[seq]
            print seq, N, raw, new
            rawNames = [prms['paths'][raw] % (seq,i) for i in range(N)]          
            newNames = [prms['paths'][new] % (seq,i) for i in range(N)]
            dirName = os.path.dirname(newNames[0])
            if not os.path.exists(dirName):
                os.makedirs(dirName)
            for rawIm, newIm in zip(rawNames, newNames):
                im = scm.imread(rawIm)
                scm.imsave(newIm, im)

##
# Get the names of images
preprocessing.py 文件源码 项目:metaqnn 作者: bowenbaker 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def preprocess(image_dir, new_image_dir, preprocess_fn):

    image_paths = []
    labels = []

    if os.path.isdir(new_image_dir):
        rmtree(new_image_dir)
    os.makedirs(new_image_dir)

    classes = os.listdir(image_dir)

    for clas in classes:
        class_dir = os.path.join(image_dir, str(clas))
        new_class_dir = os.path.join(new_image_dir, str(clas))
        os.makedirs(new_class_dir)

        for image_name in os.listdir(class_dir):
            image = misc.imread(os.path.join(class_dir, image_name))
            image = preprocess_fn(image)
            misc.imsave(os.path.join(new_class_dir, image_name), image)
test.py 文件源码 项目:Deep-Image-Matting 作者: Joker316701882 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def main(args):

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = args.gpu_fraction)
    with tf.Session(config=tf.ConfigProto(gpu_options = gpu_options)) as sess:
        saver = tf.train.import_meta_graph('./meta_graph/my-model.meta')
        saver.restore(sess,tf.train.latest_checkpoint('./model'))
        image_batch = tf.get_collection('image_batch')[0]
        GT_trimap = tf.get_collection('GT_trimap')[0]
        pred_mattes = tf.get_collection('pred_mattes')[0]

        rgb = misc.imread(args.rgb)
        alpha = misc.imread(args.alpha,'L')
        trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
        origin_shape = alpha.shape
        rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3]).astype(np.float32)-g_mean,0)
        trimap = np.expand_dims(np.expand_dims(misc.imresize(trimap.astype(np.uint8),[320,320],interp = 'nearest').astype(np.float32),2),0)

        feed_dict = {image_batch:rgb,GT_trimap:trimap}
        pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
        final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
        # misc.imshow(final_alpha)
        misc.imsave('./alpha.png',final_alpha)
test_util.py 文件源码 项目:sporco 作者: bwohlberg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_15(self):
        bpth = tempfile.mkdtemp()
        os.mkdir(os.path.join(bpth, 'a'))
        ipth = os.path.join(bpth, 'a', 'b.png')
        img = np.ones((32,32))
        misc.imsave(ipth, img)
        ei = util.ExampleImages(pth=bpth)
        im = ei.images()
        assert(len(im) > 0)
        gp = ei.groups()
        assert(len(gp) > 0)
        img = ei.image('b.png', group='a')
        assert(img.shape == (32,32))
        im = ei.image('b.png', group='a', scaled=True, dtype=np.float32,
                      zoom=0.5)
        os.remove(ipth)
        os.rmdir(os.path.join(bpth, 'a'))
        os.rmdir(bpth)
pngWriter.py 文件源码 项目:pytorch_fnet 作者: AllenCellModeling 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def save(self, data):
        """Takes in an array of CYX pixel values and writes them to a png

        :param data: a CYX or YX array with C being the rgb channels for each pixel value
        """

        # check for rgb, rgba, or r
        if len(data.shape) == 3:
            assert data.shape[0] in [4, 3, 2, 1]
            # if three dimensions, transpose to YXC (imsave() needs it in these axes)
            data = np.transpose(data, (1, 2, 0))
            # if there's only one channel, repeat across the next two channels
            if data.shape[2] == 1:
                data = np.repeat(data, repeats=3, axis=2)
            elif data.shape[2] == 2:
                data = np.pad(data, ((0, 0), (0, 0), (0, 1)), 'constant')
        elif len(data.shape) != 2:
            raise ValueError("Data was not of dimensions CYX or YX")

        imsave(self.file_path, data, format="png")
test_faceservice.py 文件源码 项目:icyface_api 作者: bupticybee 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_recognize(args):
    imdetect = args.detect
    im1 = args.im1
    im2 = args.im2

    payload = {'img':file2base64(imdetect)}
    import numpy as np
    imarr = np.array(misc.imread(imdetect))
    r = requests.get("http://face.icybee.cn/face/face_detect", data=payload)
    print(json.loads(r.text)['boxes'][0])
    box = json.loads(r.text)['boxes'][0]
    box = [int(i) for  i in box]
    misc.imsave('sample.jpg',imarr[box[1]:box[3],box[0]:box[2],:],)

    payload = {
            'img1':file2base64(im1),
            'img2':file2base64(im2)
            }
    r = requests.get("http://face.icybee.cn/face/face_recognize", data=payload)
    print(r.text)
    #print(json.loads(r.text)['dist'])
multi_augmentation_pic.py 文件源码 项目:CNN_UCMerced-LandUse_Caffe 作者: yangxue0827 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def mirror_pic(output_data_path, _dir, pic, img):

    fname, fextension = os.path.splitext(pic)

    mirror_x_img = img[:, ::-1, :]
    mirror_x_img_gray = rgb2gray(mirror_x_img)
    mirror_y_img = img[::-1, :, :]
    mirror_y_img_gray = rgb2gray(mirror_y_img)
    mirror_xy_img = img[::-1, ::-1, :]
    mirror_xy_img_gray = rgb2gray(mirror_xy_img)

    misc.imsave(os.path.join(output_data_path, _dir, (fname + '_mirror_x' + fextension)), mirror_x_img_gray)
    os.chmod(os.path.join(output_data_path, _dir, (fname + '_mirror_x' + fextension)), stat.S_IWRITE)
    misc.imsave(os.path.join(output_data_path, _dir, (fname + '_mirror_y' + fextension)), mirror_y_img_gray)
    os.chmod(os.path.join(output_data_path, _dir, (fname + '_mirror_y' + fextension)), stat.S_IWRITE)
    misc.imsave(os.path.join(output_data_path, _dir, (fname + '_mirror_xy' + fextension)), mirror_xy_img_gray)
    os.chmod(os.path.join(output_data_path, _dir, (fname + '_mirror_xy' + fextension)), stat.S_IWRITE)

    return mirror_x_img, mirror_y_img, mirror_xy_img
preprocess.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def process_mot(path):
    '''
    1920 x 1080 -> 384 x 216
    640 x 480 -> 320 x 240
    '''
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                if img.shape == LARGE_IMAGE_SIZE:
                    img = misc.imresize(img, size=LARGE_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                elif img.shape == MEDIUM_IMAGE_SIZE:
                    img = misc.imresize(img, size=MEDIUM_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                else:
                    print("Unexpected shape " + str(img.shape))
                    continue
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
    return images
preprocess_vot.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def process_vot(path, min_height, min_width):
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        img_shape = None
        pad_height = 0
        pad_width = 0
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                img_shape = img.shape
                ratio = min(float(min_width)/img.shape[1], float(min_height)/img.shape[0])
                img = misc.imresize(img, size=ratio)
                img, pad_height, pad_width = pad_image(img, (min_height, min_width))
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
        if img_shape:
            gt_path = os.path.join(dirpath, "groundtruth.txt")
            preprocess_label(gt_path, ratio, img_shape, min_height, min_width, pad_height, pad_width)
    return images
convertMed2Slice.py 文件源码 项目:infantSeg 作者: ginobilinie 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main():
    #ids=[14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]
    ids=range(1,41)
    rate=2.0/3

    for id in ids:
        gtfn=os.path.join(path,'P%d/V2Rct.nii.gz'%id)
#         outfn=os.path.join(path,'P%d/V2Rct_all.nii.gz'%id)
        gtOrg=sitk.ReadImage(gtfn)
        gtMat=sitk.GetArrayFromImage(gtOrg)
        print 'mat shape, ', gtMat.shape
        for s in range(1,gtMat.shape[0]):
            sliceMat=gtMat[s-1,:,:]
            sliceMatScale = nd.interpolation.zoom(sliceMat, zoom=rate)
            scmi.imsave('p%d_'%id+'s%d.png'%s, sliceMat)
        #gtMat=np.transpose(gtMat,(2,1,0))
#         gtVol=sitk.GetImageFromArray(gtMat)
#         sitk.WriteImage(gtVol,outfn)
#         
#         prefn='preSub%d_as32_v12.nii'%id
#         preOrg=sitk.ReadImage(prefn)
#         preMat=sitk.GetArrayFromImage(preOrg)
#         preMat=np.transpose(preMat,(2,1,0))
#         preVol=sitk.GetImageFromArra(preMat)
#         sitk.WriteImage(preVol,prefn)
smilevector.py 文件源码 项目:dribbot 作者: dribnet 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def resize_to_optimal(infile, scale_ratio, rect, outfile):
    image_array = imread(infile, mode='RGB')
    im_shape = image_array.shape
    h, w, _ = im_shape

    width = float(rect.right()-rect.left())
    scale_amount = (optimal_extent * scale_ratio) / width
    new_w = int(scale_amount * w)
    new_h = int(scale_amount * h)
    new_w = new_w - (new_w % 4)
    new_h = new_h - (new_h % 4)

    print("optimal resize of width {} and ratio {} went from {},{} to {},{}".format(width, scale_ratio, w, h, new_w, new_h))
    new_shape = (new_h, new_w)
    image_array_resized = imresize(image_array, new_shape)
    imsave(outfile, image_array_resized)
    return new_shape
main.py 文件源码 项目:gan-error-avoidance 作者: aleju 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def visualize(code, filename, filename_r, filename_all):
    gen.eval()
    generated_by_riter = [[] for _ in range(1+opt.r_iterations)]

    for i in xrange((code.size(0) - 1) // opt.batch_size + 1):
        batch_size = min(opt.batch_size, code.size(0) - i * opt.batch_size)
        batch_code = Variable(code[i * opt.batch_size : i * opt.batch_size + batch_size])

        for r_iter in xrange(1+opt.r_iterations):
            imgs, _ = gen(batch_code, n_execute_lis_layers=r_iter)
            if opt.output_scale:
                imgs = imgs * 2 - 1
            imgs_np = (imgs.data.cpu().numpy()*255).astype(np.uint8).transpose((0, 2, 3, 1))
            generated_by_riter[r_iter].extend(imgs_np)

    generated_all = []
    for i in xrange(len(generated_by_riter[0])):
        block = [imgs[i] for imgs in generated_by_riter]
        generated_all.append(np.hstack(block))

    misc.imsave(filename, util.draw_grid(generated_by_riter[0], cols=opt.vis_col))
    for r_iter in xrange(1, 1+opt.r_iterations):
        misc.imsave(filename_r.format(r_iter-1), util.draw_grid(generated_by_riter[r_iter], cols=opt.vis_col))
    misc.imsave(filename_all, util.draw_grid(generated_all, cols=opt.vis_col))
    gen.train()
gen.py 文件源码 项目:texture_generation 作者: Kyubyong 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def generate(sample_image): 
    start_time = time.time() 

    g = ModelGraph()

    with tf.Session() as sess:
        # We need to initialize variables in this case because the Variable `generator/x` will not restored.
        tf.sg_init(sess)

        vars = [v for v in tf.global_variables() if "generator" not in v.name]
        saver = tf.train.Saver(vars)
        saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))

        i = 0
        while True:
            mse, _ = sess.run([g.mse, g.train_gen], {g.y: transform_image(sample_image)}) # (16, 28)

            if time.time() - start_time > 60: # Save every 60 seconds
                gen_image = sess.run(g.x)
                gen_image = np.squeeze(gen_image)
                misc.imsave('gen_images/%s/gen_%.2f.jpg' % (label, mse), gen_image)

                start_time = time.time()
                i += 1
                if i == 60: break # Finish after 1 hour
06_render_bodies.py 文件源码 项目:generating_people 作者: classner 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def process_image(im_fp, dset_part):
    bn = path.basename(im_fp)
    dn = path.dirname(im_fp)
    img_idx = int(bn[:bn.find("_")])
    body_fp = path.join(dn, bn + '_body.pkl')
    im = sm.imread(im_fp)
    if not path.exists(body_fp):
        raise Exception("Body fit not found for `%s`!" % (im_fp))
    rendering = upr.render_body_impl(body_fp,
                                     resolution=(im.shape[0], im.shape[1]),
                                     quiet=True,
                                     use_light=False)[0]
    annotation = upm.regions_to_classes(rendering, upm.six_region_groups,
                                        warn_id=str(img_idx))
    out_fp = path.join('..', 'data', 'pose', 'extracted', dset_part,
                       "{:0{width}d}_bodysegments.png".format(
        img_idx, width=bn.find("_")))
    sm.imsave(out_fp, annotation)
    out_fp = path.join('..', 'data', 'pose', 'extracted', dset_part,
                       "{:0{width}d}_bodysegments_vis.png".format(
        img_idx, width=bn.find("_")))
    sm.imsave(out_fp, vs.apply_colormap(annotation, vmin=0, vmax=6,
                                        cmap=config.CMAP)[:, :, 0:3])
predict_video.py 文件源码 项目:cat-bbs 作者: aleju 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def process_frame(frame_idx, img, model, write_to_dir, conf_threshold, input_size=224):
    """Finds bounding boxes in a video frame, draws these bounding boxes
    and saves the result to HDD.
    """
    # find BBs in frame
    bbs, time_model = find_bbs(img, model, conf_threshold, input_size=input_size)

    # draw BBs
    img_out = np.copy(img)
    for (bb, score) in bbs:
        if score > conf_threshold and bb.width > 2 and bb.height > 2:
            img_out = bb.draw_on_image(img_out, color=[0, 255, 0], thickness=3)

    # save to output directory
    save_to_fp = os.path.join(write_to_dir, "%05d.jpg" % (frame_idx,))
    misc.imsave(save_to_fp, img_out)

    return time_model
image_rotate.py 文件源码 项目:visual-search 作者: GYXie 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def main():
    img = imread(args.input_path)
    img = ndimage.rotate(img, args.angle, mode=args.mode)
    misc.imsave(args.output_path, img)
image_resize.py 文件源码 项目:visual-search 作者: GYXie 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():
    print(args)
    for dir_path, dir_names, file_names in os.walk(args.input_data_dir):
        # dir_path is a string, the path to the directory
        # dir_names is a list of the names of the subdirectories in dir_path (excluding '.' and '..')
        # file_names is a list of the names of the non-directory files in dir_path
        dir_absolute_path = args.output_data_dir + dir_path.replace(args.input_data_dir, '')
        if not os.path.exists(dir_absolute_path):
            os.mkdir(dir_absolute_path)
        for file_name in file_names:
            # Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty or begins
            # with a period and contains at most one period.
            (root, ext) = os.path.splitext(file_name)
            new_file_name = '%s/%s.%dx%d%s' % (
                dir_absolute_path, root, args.width, args.height, ext)
            print(new_file_name)
            if not os.path.exists(new_file_name):
                img = imread(dir_path + '/' + file_name)
                # type(img) = ndarray, https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html
                (width, height) = img.shape[0:2]
                if width > height:
                    size = (args.width, height * args.width / width)
                else:
                    size = (width * args.height / height, args.height)
                new_img = misc.imresize(img, size)
                misc.imsave(new_file_name, new_img)
pascal_voc_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def setup(self, pre_encode=False):
        sbd_path = get_data_path('sbd')
        voc_path = get_data_path('pascal')

        target_path = self.root + '/SegmentationClass/pre_encoded/'
        if not os.path.exists(target_path):
            os.makedirs(target_path)

        sbd_train_list = tuple(open(sbd_path + 'dataset/train.txt', 'r'))
        sbd_train_list = [id_.rstrip() for id_ in sbd_train_list]

        self.files['train_aug'] = self.files['train'] + sbd_train_list

        if pre_encode:
            print("Pre-encoding segmentation masks...")
            for i in tqdm(sbd_train_list):
                lbl_path = sbd_path + 'dataset/cls/' + i + '.mat'
                lbl = io.loadmat(lbl_path)['GTcls'][0]['Segmentation'][0].astype(np.int32)
                lbl = m.toimage(lbl, high=lbl.max(), low=lbl.min())
                m.imsave(target_path + i + '.png', lbl)

            for i in tqdm(self.files['trainval']):
                lbl_path = self.root + '/SegmentationClass/' + i + '.png'
                lbl = self.encode_segmap(m.imread(lbl_path))
                lbl = m.toimage(lbl, high=lbl.max(), low=lbl.min())
                m.imsave(target_path + i + '.png', lbl)
jitering.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def pcaCreate(image_files,dir,name_num, dir_list):
    image_list = []
    new_file_name = dir
    save_dir = dir_list + new_file_name
    save_dir_tt = save_dir + "\\"
    for image_file in image_files:
        image_list.append(misc.imread(image_file))

    for image in image_list:
        img = np.asarray(image, dtype='float32')
        img = img / 255.
        img_size = img.size / 3
        img1 = img.reshape(img_size, 3)
        img1 = np.transpose(img1)
        img_cov = np.cov([img1[0], img1[1], img1[2]])
        lamda, p = np.linalg.eig(img_cov)

        p = np.transpose(p)

        alpha1 = random.normalvariate(0, 0.3)
        alpha2 = random.normalvariate(0, 0.3)
        alpha3 = random.normalvariate(0, 0.3)
        v = np.transpose((alpha1 * lamda[0], alpha2 * lamda[1], alpha3 * lamda[2]))

        add_num = np.dot(p, v)

        img2 = np.array([img[:, :, 0] + add_num[0], img[:, :, 1] + add_num[1], img[:, :, 2] + add_num[2]])

        img2 = np.swapaxes(img2, 0, 2)
        img2 = np.swapaxes(img2, 0, 1)

        misc.imsave(save_dir_tt + np.str(name_num) + '.jpg', img2)
        name_num += 1
    return image_list
jitering.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def pcaCreate_Ori(image_files,dir):
    parser = argparse.ArgumentParser()
    parser.add_argument("file_suffix", help="specific the file suffix")
    parser.add_argument("root_dir", help="E:\\")
    parser.add_argument("-f", "--file", help="record result to file")
    parser.add_argument("data_set",help= "specific the file suffix")
    args = parser.parse_args()
    img_num = len(os.listdir(args.root_dir + '/' + args.dataset))
    for i in range(img_num):
        img_name = os.listdir(args.root_dir + '/' + args.dataset)[i]
        img = Image.open(os.path.join(args.root_dir, args.dataset, img_name))

        img = np.asarray(img, dtype='float32')
        img = img / 255.
        img_size = img.size / 3
        img1 = img.reshape(img_size, 3)
        img1 = np.transpose(img1)
        img_cov = np.cov([img1[0], img1[1], img1[2]])
        lamda, p = np.linalg.eig(img_cov)

        p = np.transpose(p)

        alpha1 = random.normalvariate(0, 0.3)
        alpha2 = random.normalvariate(0, 0.3)
        alpha3 = random.normalvariate(0, 0.3)
        v = np.transpose((alpha1 * lamda[0], alpha2 * lamda[1], alpha3 * lamda[2]))

        add_num = np.dot(p, v)

        img2 = np.array([img[:, :, 0] + add_num[0], img[:, :, 1] + add_num[1], img[:, :, 2] + add_num[2]])

        img2 = np.swapaxes(img2, 0, 2)
        img2 = np.swapaxes(img2, 0, 1)

        misc.imsave('test2222.jpg', img2)
RPiCamera.py 文件源码 项目:coliform-project 作者: uprm-research-resto 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def saveImage(rgb_array, savepath):
    """
    Converts image array to file
    :param rgb_array: input rgb array
    :param savepath: save file location
    """
    misc.imsave(savepath, rgb_array)
RPiCamera.py 文件源码 项目:coliform-project 作者: uprm-research-resto 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def saveAllImages(rgb_array, directory, foldername):
    """
    Saves unfiltered and filtered images to a file directory
    :param rgb_array: image rgb array
    :param directory: image directory name
    :param foldername: name of the folder that will contain saved files
    :return:
    """
    rgb_array_red = rgb_array * 1
    r_array = setImageColor(rgb_array_red, 'r')
    rgb_array_green = rgb_array * 1
    g_array = setImageColor(rgb_array_green, 'g')
    rgb_array_blue = rgb_array * 1
    b_array = setImageColor(rgb_array_blue, 'b')
    trueimage = 'image.png'
    redimage = 'red.png'
    greenimage = 'green.png'
    blueimage = 'blue.png'
    plotimage = 'plot.png'
    if not os.path.exists(os.path.join(directory, foldername)):
        os.mkdir(os.path.join(directory, foldername))
    misc.imsave(os.path.join(directory, foldername, trueimage), rgb_array)
    misc.imsave(os.path.join(directory, foldername, redimage), r_array)
    misc.imsave(os.path.join(directory, foldername, greenimage), g_array)
    misc.imsave(os.path.join(directory, foldername, blueimage), b_array)
    savePlot(rgb_array, os.path.join(directory, foldername, plotimage))
export.py 文件源码 项目:BilibiliDraw 作者: TotoriKira 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def main():
    '''
        ????????
    '''

    im_array = ndimage.imread("greytech.png", mode='RGB')

    print(len(im_array), len(im_array[0]))

    color = set()

    for i in im_array:
        for j in i:
            color.add(tuple(j))

    #  tmp = [[0 for i in range(len(im_array[0]))] for j in range(len(im_array))]
    #
    #  for i in range((len(im_array))):
    #      for j in range(len(im_array[0])):
    #          print(str(tuple(im_array[i][j])))
    #          if str(tuple(im_array[i][j]))!= "(255, 255, 255)":
    #              tmp[i][j]=(0,0,0)
    #          else:
    #              tmp[i][j]=im_array[i][j]
    #
    #  misc.imsave("test.bmp", tmp)


    print('{')
    for i in color:
        print("\"{0}\":,".format(i))
    print('}')

    #  for noi,i in enumerate(im_array):
    #      for noj,j in enumerate(i):
    #          print("Row:%d Col:%d  color: %s" %(noi, noj, j))
export.py 文件源码 项目:BilibiliDraw 作者: TotoriKira 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def main():
    '''
        ????????
    '''

    im_array = ndimage.imread("ustc.bmp", mode='RGB')

    print(len(im_array), len(im_array))

    color = set()

    for i in im_array:
        for j in i:
            color.add(tuple(j))

    #  tmp = [[0 for i in range(len(im_array[0]))] for j in range(len(im_array))]
    #
    #  for i in range((len(im_array))):
    #      for j in range(len(im_array[0])):
    #          print(str(tuple(im_array[i][j])))
    #          if str(tuple(im_array[i][j]))!= "(255, 255, 255)":
    #              tmp[i][j]=(0,0,0)
    #          else:
    #              tmp[i][j]=im_array[i][j]
    #
    #  misc.imsave("test.bmp", tmp)


    print('{')
    for i in color:
        print("\"{0}\":,".format(i))
    print('}')

    #  for noi,i in enumerate(im_array):
    #      for noj,j in enumerate(i):
    #          print("Row:%d Col:%d  color: %s" %(noi, noj, j))
export.py 文件源码 项目:BilibiliDraw 作者: TotoriKira 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main():
    '''
        ????????
    '''

    im_array = ndimage.imread("greytech.png", mode='RGB')

    print(len(im_array), len(im_array[0]))

    color = set()

    for i in im_array:
        for j in i:
            color.add(tuple(j))

    #  tmp = [[0 for i in range(len(im_array[0]))] for j in range(len(im_array))]
    #
    #  for i in range((len(im_array))):
    #      for j in range(len(im_array[0])):
    #          print(str(tuple(im_array[i][j])))
    #          if str(tuple(im_array[i][j]))!= "(255, 255, 255)":
    #              tmp[i][j]=(0,0,0)
    #          else:
    #              tmp[i][j]=im_array[i][j]
    #
    #  misc.imsave("test.bmp", tmp)


    print('{')
    for i in color:
        print("\"{0}\":,".format(i))
    print('}')

    #  for noi,i in enumerate(im_array):
    #      for noj,j in enumerate(i):
    #          print("Row:%d Col:%d  color: %s" %(noi, noj, j))
export.py 文件源码 项目:BilibiliDraw 作者: TotoriKira 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def main():
    '''
        ????????
    '''

    im_array = ndimage.imread("ms.bmp", mode='RGB')

    print(len(im_array), len(im_array))

    color = set()

    for i in im_array:
        for j in i:
            color.add(tuple(j))

    #  tmp = [[0 for i in range(len(im_array[0]))] for j in range(len(im_array))]
    #
    #  for i in range((len(im_array))):
    #      for j in range(len(im_array[0])):
    #          print(str(tuple(im_array[i][j])))
    #          if str(tuple(im_array[i][j]))!= "(255, 255, 255)":
    #              tmp[i][j]=(0,0,0)
    #          else:
    #              tmp[i][j]=im_array[i][j]
    #
    #  misc.imsave("test.bmp", tmp)


    print('{')
    for i in color:
        print("\"{0}\":,".format(i))
    print('}')

    #  for noi,i in enumerate(im_array):
    #      for noj,j in enumerate(i):
    #          print("Row:%d Col:%d  color: %s" %(noi, noj, j))
export.py 文件源码 项目:BilibiliDraw 作者: TotoriKira 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def main():
    '''
        ????????
    '''

    im_array = ndimage.imread("greytech.png", mode='RGB')

    print(len(im_array), len(im_array[0]))

    color = set()

    for i in im_array:
        for j in i:
            color.add(tuple(j))

    #  tmp = [[0 for i in range(len(im_array[0]))] for j in range(len(im_array))]
    #
    #  for i in range((len(im_array))):
    #      for j in range(len(im_array[0])):
    #          print(str(tuple(im_array[i][j])))
    #          if str(tuple(im_array[i][j]))!= "(255, 255, 255)":
    #              tmp[i][j]=(0,0,0)
    #          else:
    #              tmp[i][j]=im_array[i][j]
    #
    #  misc.imsave("test.bmp", tmp)


    print('{')
    for i in color:
        print("\"{0}\":,".format(i))
    print('}')

    #  for noi,i in enumerate(im_array):
    #      for noj,j in enumerate(i):
    #          print("Row:%d Col:%d  color: %s" %(noi, noj, j))


问题


面经


文章

微信
公众号

扫码关注公众号