python类imresize()的实例源码

DataTransformerLabels.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def transformData(self, data):
        if(self.opts.has_key('newdims')):
            (H, W) = self.opts['newdims']
            data = misc.imresize(data, (H, W), interp='bilinear')

        if(self.opts.has_key('zeromean') and self.opts['zeromean']):
            mean = self.opts['dataset_mean'] # provided by bmanager
            data = data - mean


        if(self.opts.has_key('rangescale') and self.opts['rangescale']):
            min_ = self.opts['dataset_min']  # provided by bmanager
            min_ = np.abs(min_.min())
            max_ = self.opts['dataset_max']  # provided by bmanager
            max_ = np.abs(max_.max())
            data = 127 * data / max(min_, max_)
        else:
            data = data - 127.0

        if(self.opts.has_key('randomflip') and self.opts['randomflip']):
            if(np.random.rand() <= self.opts['randomflip_prob']):
                data = np.flipud(data)
                self.dataflip_state = True

        return data
app.py 文件源码 项目:mnist-flask 作者: akashdeepjassal 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def predict():
    # get data from drawing canvas and save as image
    parseImage(request.get_data())

    # read parsed image back in 8-bit, black and white mode (L)
    x = imread('output.png', mode='L')
    x = np.invert(x)
    x = imresize(x,(28,28))

    # reshape image data for use in neural network
    x = x.reshape(1,28,28,1)
    with graph.as_default():
        out = model.predict(x)
        print(out)
        print(np.argmax(out, axis=1))
        response = np.array_str(np.argmax(out, axis=1))
        return response
preprocess.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process_mot(path):
    '''
    1920 x 1080 -> 384 x 216
    640 x 480 -> 320 x 240
    '''
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                if img.shape == LARGE_IMAGE_SIZE:
                    img = misc.imresize(img, size=LARGE_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                elif img.shape == MEDIUM_IMAGE_SIZE:
                    img = misc.imresize(img, size=MEDIUM_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                else:
                    print("Unexpected shape " + str(img.shape))
                    continue
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
    return images
preprocess_vot.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def process_vot(path, min_height, min_width):
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        img_shape = None
        pad_height = 0
        pad_width = 0
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                img_shape = img.shape
                ratio = min(float(min_width)/img.shape[1], float(min_height)/img.shape[0])
                img = misc.imresize(img, size=ratio)
                img, pad_height, pad_width = pad_image(img, (min_height, min_width))
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
        if img_shape:
            gt_path = os.path.join(dirpath, "groundtruth.txt")
            preprocess_label(gt_path, ratio, img_shape, min_height, min_width, pad_height, pad_width)
    return images
camvector.py 文件源码 项目:nnp 作者: dribnet 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def do_roc(self):
        if self.gan_mode and self.dmodel2 is not None:
            dmodel_cur = self.dmodel2
            scale_factor = 2
        elif self.dmodel is not None:
            dmodel_cur = self.dmodel
            scale_factor = self.scale_factor
        else:
            theApp.cur_hist_tex = theApp.standard_hist_tex
            theApp.cur_roc_tex = theApp.standard_roc_tex
            return
        encoded_vector_source = self.get_encoded(dmodel_cur, self.cur_vector_source, scale_factor)
        encoded_vector_dest = self.get_encoded(dmodel_cur, self.cur_vector_dest, scale_factor)
        attribute_vector = encoded_vector_dest - encoded_vector_source
        threshold = None
        outfile = "{}/{}".format(roc_dir, get_date_str())
        do_roc(attribute_vector, encoded, attribs, attribute_index, threshold, outfile)
        hist_img = imread("{}_hist_both.png".format(outfile), mode='RGB')
        roc_img = imread("{}_roc.png".format(outfile), mode='RGB')
        hist_img = imresize(hist_img, roc_image_resize)
        roc_img = imresize(roc_img, roc_image_resize)
        theApp.cur_hist_tex = image_to_texture(hist_img)
        theApp.cur_roc_tex = image_to_texture(roc_img)
mnist_problem_generator.py 文件源码 项目:AdaptiveOptim 作者: tomMoral 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_dictionary_dl(lmbd, K=100, N=10000, dir_mnist='save_exp/mnist'):

    import os.path as osp
    fname = osp.join(dir_mnist, "D_mnist_K{}_lmbd{}.npy".format(K, lmbd))
    if osp.exists(fname):
        D = np.load(fname)
    else:
        from sklearn.decomposition import DictionaryLearning
        mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
        im = mnist.train.next_batch(N)[0]
        im = im.reshape(N, 28, 28)
        im = [imresize(a, (17, 17), interp='bilinear', mode='L')-.5
              for a in im]
        X = np.array(im).reshape(N, -1)
        print(X.shape)

        dl = DictionaryLearning(K, alpha=lmbd*N, fit_algorithm='cd',
                                n_jobs=-1, verbose=1)
        dl.fit(X)
        D = dl.components_.reshape(K, -1)
        np.save(fname, D)
    return D
Edge_Detection.py 文件源码 项目:maze-vision 作者: jpschnel 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def main(input_pic):
    img = cv.imread(input_pic,cv.CV_LOAD_IMAGE_GRAYSCALE)
    img=sp.gaussian_filter(img,sigma=3)
    img= imresize(img,((len(img)/10),(len(img[0])/10)))
    img_arr=np.asarray(img,dtype="int32")

    LoG_arr=LoG_Filter(img_arr)
    cv.imwrite('LoG_image.jpg',LoG_arr)
    LoG_arr=cv.imread('LoG_image.jpg',cv.CV_LOAD_IMAGE_GRAYSCALE)
    Hist=genHistogram(LoG_arr)
    #print(Hist)
    for i in range(0,len(LoG_arr)):
        for j in range(0,len(LoG_arr[0])):
             if LoG_arr[i][j]<200:
                 LoG_arr[i][j]=0
             else:
                 LoG_arr[i][j]=255

    cv.imwrite('LoG_image.jpg',LoG_arr)    
    #img_new=cv.imread('LoG_image.jpg',cv.CV_LOAD_IMAGE_GRAYSCALE)
environment.py 文件源码 项目:async-deeprl 作者: dbobrenko 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def preprocess(self, screen, new_game=False):
        """Converts to grayscale, resizes and stacks input screen.
        :param screen: array image in [0; 255] range with shape=[H, W, C]
        :param new_game: if True - repeats passed screen `memlen` times
                   otherwise - stacks with previous screens"
        :type screen: nd.array
        :type new_game: bool
        :return: image in [0.0; 1.0] stacked with last `memlen-1` screens; 
                shape=[1, h, w, memlen]
        :rtype: nd.array"""
        gray = screen.astype('float32').mean(2)  # no need in true grayscale, just take mean
        # convert values into [0.0; 1.0] range
        s = imresize(gray, (self.W, self.H)).astype('float32') * (1. / 255)
        s = s.reshape(1, s.shape[0], s.shape[1], 1)
        if new_game or self.stacked_s is None:
            self.stacked_s = np.repeat(s, self.memlen, axis=3)
        else:
            self.stacked_s = np.append(s, self.stacked_s[:, :, :, :self.memlen - 1], axis=3)
        return self.stacked_s
environment.py 文件源码 项目:async-deeprl 作者: dbobrenko 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def preprocess(self, screen, new_game=False):
        luminance = screen.astype('float32').mean(2)  # no need in true grayscale, just take mean
        # crop top/bottom Atari specific borders
        if self.env.spec.id == 'SpaceInvaders-v0':
            # crop only bottom in SpaceInvaders, due to flying object at the top of the screen
            luminance = luminance[:-15, :]
        else:
            luminance = luminance[36:-15, :]
        # convert into [0.0; 1.0]
        s = imresize(luminance, (self.W, self.H)).astype('float32') * (1. / 255)
        s = s.reshape(1, s.shape[0], s.shape[1], 1)
        if new_game or self.stacked_s is None:
            self.stacked_s = np.repeat(s, self.memlen, axis=3)
        else:
            self.stacked_s = np.append(s, self.stacked_s[:, :, :, :self.memlen - 1], axis=3)
        return self.stacked_s
figures.py 文件源码 项目:odin 作者: imito 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def resize_images(x, shape):
  from scipy.misc import imresize

  reszie_func = lambda x, shape: imresize(x, shape, interp='bilinear')
  if x.ndim == 4:
    def reszie_func(x, shape):
      # x: 3D
      # The color channel is the first dimension
      tmp = []
      for i in x:
        tmp.append(imresize(i, shape).reshape((-1,) + shape))
      return np.swapaxes(np.vstack(tmp).T, 0, 1)

  imgs = []
  for i in x:
    imgs.append(reszie_func(i, shape))
  return imgs
worker.py 文件源码 项目:Cuppa 作者: flipkart-incubator 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __caffe_predict(self, net, height, width, url):
        # logger = logging.getLogger(__name__)
        #
        # logger.info("caffe_predict has been called")

        input_layer = net.inputs[0]
        output_layer = net.outputs[0]
        r = requests.get(url, allow_redirects=False)
        arr = numpy.asarray(bytearray(r.content), dtype=numpy.uint8)
        img = cv2.imdecode(arr, -1)
        resized_img = imresize(img, (height,width), 'bilinear')
        transposed_resized_img = numpy.transpose(resized_img, (2,0,1))
        reqd_shape = (1,) + transposed_resized_img.shape
        #net.blobs["data_q"].reshape(*reqd_shape)
        #net.blobs["data_q"].data[...] = transposed_resized_img
        net.blobs[input_layer].reshape(*reqd_shape)
        net.blobs[input_layer].data[...] = transposed_resized_img
        net.forward()
        #result = net.blobs['latent_q_encode'].data[0].tolist()
        result = net.blobs[output_layer].data[0].tolist()
        return result
ddqn_agent.py 文件源码 项目:doubleDQN 作者: masataka46 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def agent_start(self, observation):

        # Preprocess
        tmp = np.bitwise_and(np.asarray(observation.intArray[128:]).reshape([210, 160]), 0b0001111)  # Get Intensity from the observation
        obs_array = (spm.imresize(tmp, (110, 84)))[110-84-8:110-8, :]  # Scaling

        # Initialize State
        self.state = np.zeros((4, 84, 84), dtype=np.uint8)
        self.state[0] = obs_array
        state_ = cuda.to_gpu(np.asanyarray(self.state.reshape(1, 4, 84, 84), dtype=np.float32))

        # Generate an Action e-greedy
        returnAction = Action()
        action, Q_now = self.DDQN.e_greedy(state_, self.epsilon)
        returnAction.intArray = [action]

        # Update for next step
        self.lastAction = copy.deepcopy(returnAction)
        self.last_state = self.state.copy()
        self.last_observation = obs_array

        return returnAction
preprocess.py 文件源码 项目:plda 作者: RaviSoji 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def preprocess_faces(images, n_components='default', resize_shape='default'):
    """ Notes: Images are all square, but not the same size. We resize all the
                images to be the same sized square, thereby preserving the
                aspect ratios.
    """
    for img in images:
        assert img.shape[0] == img.shape[1]

    if resize_shape == 'default':
        resize_shape = get_smallest_shape(images)

    preprocessed_images = []
    for img in images:
        prepped_img = imresize(img, resize_shape).astype(float)
        prepped_img = prepped_img.flatten()
        preprocessed_images.append(prepped_img)
    preprocessed = get_principal_components(preprocessed_images, n_components)

    return preprocessed
face.py 文件源码 项目:facenet 作者: davidsandberg 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def find_faces(self, image):
        faces = []

        bounding_boxes, _ = align.detect_face.detect_face(image, self.minsize,
                                                          self.pnet, self.rnet, self.onet,
                                                          self.threshold, self.factor)
        for bb in bounding_boxes:
            face = Face()
            face.container_image = image
            face.bounding_box = np.zeros(4, dtype=np.int32)

            img_size = np.asarray(image.shape)[0:2]
            face.bounding_box[0] = np.maximum(bb[0] - self.face_crop_margin / 2, 0)
            face.bounding_box[1] = np.maximum(bb[1] - self.face_crop_margin / 2, 0)
            face.bounding_box[2] = np.minimum(bb[2] + self.face_crop_margin / 2, img_size[1])
            face.bounding_box[3] = np.minimum(bb[3] + self.face_crop_margin / 2, img_size[0])
            cropped = image[face.bounding_box[1]:face.bounding_box[3], face.bounding_box[0]:face.bounding_box[2], :]
            face.image = misc.imresize(cropped, (self.face_crop_size, self.face_crop_size), interp='bilinear')

            faces.append(face)

        return faces
smilevector.py 文件源码 项目:dribbot 作者: dribnet 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def resize_to_optimal(infile, scale_ratio, rect, outfile):
    image_array = imread(infile, mode='RGB')
    im_shape = image_array.shape
    h, w, _ = im_shape

    width = float(rect.right()-rect.left())
    scale_amount = (optimal_extent * scale_ratio) / width
    new_w = int(scale_amount * w)
    new_h = int(scale_amount * h)
    new_w = new_w - (new_w % 4)
    new_h = new_h - (new_h % 4)

    print("optimal resize of width {} and ratio {} went from {},{} to {},{}".format(width, scale_ratio, w, h, new_w, new_h))
    new_shape = (new_h, new_w)
    image_array_resized = imresize(image_array, new_shape)
    imsave(outfile, image_array_resized)
    return new_shape
MER_NN.py 文件源码 项目:EquationRecognition 作者: xyjiang94 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def input_wrapper(f):
    image = misc.imread(f)
    sx,sy = image.shape
    diff = np.abs(sx-sy)

    sx,sy = image.shape
    image = np.pad(image,((sx//8,sx//8),(sy//8,sy//8)),'constant')
    if sx > sy:
        image = np.pad(image,((0,0),(diff//2,diff//2)),'constant')
    else:
        image = np.pad(image,((diff//2,diff//2),(0,0)),'constant')

    image = dilation(image,disk(max(sx,sy)/32))
    image = misc.imresize(image,(32,32))
    if np.max(image) > 1:
        image = image/255.
    return image
preprocessing.py 文件源码 项目:EquationRecognition 作者: xyjiang94 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def input_wrapper(f):
    image = misc.imread(f)
    # image[image>50]=255
    # image[image<=50]=0
    sx,sy = image.shape
    diff = np.abs(sx-sy)

    sx,sy = image.shape
    image = np.pad(image,((sx//8,sx//8),(sy//8,sy//8)),'constant')
    if sx > sy:
        image = np.pad(image,((0,0),(diff//2,diff//2)),'constant')
    else:
        image = np.pad(image,((diff//2,diff//2),(0,0)),'constant')

    image = dilation(image,disk(max(sx,sy)/32))
    image = misc.imresize(image,(32,32))
    if np.max(image) > 1:
        image = image/255.
    return image
vgg_loss.py 文件源码 项目:vae-celebA 作者: yzwxx 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def main():
    x = tf.placeholder(tf.float32, [None, 224, 224, 3])
    network, probs = build_vgg(x)
    # network2, probs2 = build_vgg(x)
    sess = tf.InteractiveSession()
    tl.layers.initialize_global_variables(sess)
    network.print_params()
    network.print_layers()


    npz = np.load('vgg16_weights.npz')
    params = []
    for val in sorted( npz.items() ):
        print("  Loading %s" % str(val[1].shape))
        params.append(val[1])
    tl.files.assign_params(sess, params, network)

    img1 = imread('laska.png', mode='RGB') 
    img1 = imresize(img1, (224, 224))

    prob = sess.run(probs, feed_dict={x: [img1]})[0]
    print(prob)
plot_utils.py 文件源码 项目:tensorflow-mnist-VAE 作者: hwalsuklee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _merge(self, images, size):
        h, w = images.shape[1], images.shape[2]

        h_ = int(h * self.resize_factor)
        w_ = int(w * self.resize_factor)

        img = np.zeros((h_ * size[0], w_ * size[1]))

        for idx, image in enumerate(images):
            i = int(idx % size[1])
            j = int(idx / size[1])

            image_ = imresize(image, size=(w_,h_), interp='bicubic')

            img[j*h_:j*h_+h_, i*w_:i*w_+w_] = image_

        return img
plot_utils.py 文件源码 项目:tensorflow-mnist-VAE 作者: hwalsuklee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _merge(self, images, size):
        h, w = images.shape[1], images.shape[2]

        h_ = int(h * self.resize_factor)
        w_ = int(w * self.resize_factor)

        img = np.zeros((h_ * size[0], w_ * size[1]))

        for idx, image in enumerate(images):
            i = int(idx % size[1])
            j = int(idx / size[1])

            image_ = imresize(image, size=(w_, h_), interp='bicubic')

            img[j * h_:j * h_ + h_, i * w_:i * w_ + w_] = image_

        return img

    # borrowed from https://github.com/ykwon0407/variational_autoencoder/blob/master/variational_bayes.ipynb


问题


面经


文章

微信
公众号

扫码关注公众号