python类imresize()的实例源码

pascal_voc_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl[lbl==255] = 0
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
ade20k_loader.py 文件源码 项目:pytorch-semseg 作者: meetshah1995 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def transform(self, img, lbl):
        img = img[:, :, ::-1]
        img = img.astype(np.float64)
        img -= self.mean
        img = m.imresize(img, (self.img_size[0], self.img_size[1]))
        # Resize scales images from 0 to 255, thus we need
        # to divide by 255.0
        img = img.astype(float) / 255.0
        # NHWC -> NCWH
        img = img.transpose(2, 0, 1)

        lbl = self.encode_segmap(lbl)
        classes = np.unique(lbl)
        lbl = lbl.astype(float)
        lbl = m.imresize(lbl, (self.img_size[0], self.img_size[1]), 'nearest', mode='F')
        lbl = lbl.astype(int)
        assert(np.all(classes == np.unique(lbl)))

        img = torch.from_numpy(img).float()
        lbl = torch.from_numpy(lbl).long()
        return img, lbl
utils.py 文件源码 项目:DeepWorks 作者: daigo0927 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_image(filepath, image_target, image_size):

    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))

    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]

    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1.
rl-network-test.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess_images(images):
    if images.shape[0] < 4:
        # single image
        x_t = images[0]
        x_t = imresize(x_t, (80, 80))
        x_t = x_t.astype("float")
        x_t /= 255.0
        s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
    else:
        # 4 images
        xt_list = []
        for i in range(images.shape[0]):
            x_t = imresize(images[i], (80, 80))
            x_t = x_t.astype("float")
            x_t /= 255.0
            xt_list.append(x_t)
        s_t = np.stack((xt_list[0], xt_list[1], xt_list[2], xt_list[3]), 
                       axis=2)
    s_t = np.expand_dims(s_t, axis=0)
    return s_t

############################# main ###############################
rl-network-train.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess_images(images):
    if images.shape[0] < 4:
        # single image
        x_t = images[0]
        x_t = imresize(x_t, (80, 80))
        x_t = x_t.astype("float")
        x_t /= 255.0
        s_t = np.stack((x_t, x_t, x_t, x_t), axis=2)
    else:
        # 4 images
        xt_list = []
        for i in range(images.shape[0]):
            x_t = imresize(images[i], (80, 80))
            x_t = x_t.astype("float")
            x_t /= 255.0
            xt_list.append(x_t)
        s_t = np.stack((xt_list[0], xt_list[1], xt_list[2], xt_list[3]), 
                       axis=2)
    s_t = np.expand_dims(s_t, axis=0)
    return s_t
post_sub.py 文件源码 项目:kaggle-review 作者: daxiongshu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def post_sub_one(inx):
    w,h = 1918,1280
    path,out,threshold = inx
    data = np.load(path).item()
    imgs,pred = data['name'], data['pred']
    #print(pred.shape)
    fo = open(out,'w')
    #masks = pred>threshold
    for name,mask in zip(imgs,np.squeeze(pred)):
        mask = imresize(mask,[h,w])
        mask = mask>threshold
        code = rle_encode(mask)
        code = [str(i) for i in code]
        code = " ".join(code)
        fo.write("%s,%s\n"%(name,code))
    fo.close()
    return 0
poke.py 文件源码 项目:kaggle-review 作者: daxiongshu 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show_one_img_mask(data):
    w,h = 1918,1280
    a = randint(0,31)
    path = "../input/test"
    data = np.load(data).item()
    name,masks = data['name'][a],data['pred']
    img = Image.open("%s/%s"%(path,name))
    #img.show()
    plt.imshow(img)
    plt.show()
    mask = np.squeeze(masks[a])
    mask = imresize(mask,[h,w]).astype(np.float32)
    print(mask.shape,mask[0])
    img = Image.fromarray(mask*256)#.resize([w,h])
    plt.imshow(img)
    plt.show()
utils.py 文件源码 项目:WGAN_GP 作者: daigo0927 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_image(filepath, image_target, image_size):

    img = imread(filepath).astype(np.float)
    h_origin, w_origin = img.shape[:2]

    if image_target > h_origin or image_target > w_origin:
        image_target = min(h_origin, w_origin)

    h_drop = int((h_origin - image_target)/2)    
    w_drop = int((w_origin - image_target)/2)

    if img.ndim == 2:
        img = np.tile(img.reshape(h_origin, w_origin, 1), (1,1,3))

    img_crop = img[h_drop:h_drop+image_target, w_drop:w_drop+image_target, :]

    img_resize = imresize(img_crop, [image_size, image_size])

    return np.array(img_resize)/127.5 - 1.
Train.py 文件源码 项目:BirdProject 作者: ZlodeiBaal 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def PrepareDataList(BASE, length):
    List = []
    for M in range(0,min(length,len(BASE))):
        img, text = BASE[M]
        image = misc.imread(img,mode='RGB')
        #image = misc.imresize(image, [227, 227])
        r1 = []
        if isfile(text):
            f = open(text, 'r')
            s = f.readline()
            st = s.split(' ')
            for i in range(0,2):
                r1.append(int(st[i]))
            f.close()
        else: #If there are no txt file - "no bird situation"
            r1.append(0);
            r1.append(0);
        List.append([image,r1])
    return List

# Random test and train list
pspnet.py 文件源码 项目:PSPNet-Keras-tensorflow 作者: Vladkryvoruchko 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def predict_multi_scale(full_image, net, scales, sliding_evaluation, flip_evaluation):
    """Predict an image by looking at it with different scales."""
    classes = net.model.outputs[0].shape[3]
    full_probs = np.zeros((full_image.shape[0], full_image.shape[1], classes))
    h_ori, w_ori = full_image.shape[:2]
    for scale in scales:
        print("Predicting image scaled by %f" % scale)
        scaled_img = misc.imresize(full_image, size=scale, interp="bilinear")
        if sliding_evaluation:
            scaled_probs = predict_sliding(scaled_img, net, flip_evaluation)
        else:
            scaled_probs = net.predict(scaled_img, flip_evaluation)
        # scale probs up to full size
        h, w = scaled_probs.shape[:2]
        probs = ndimage.zoom(scaled_probs, (1.*h_ori/h, 1.*w_ori/w, 1.),
                             order=1, prefilter=False)
        # visualize_prediction(probs)
        # integrate probs over all scales
        full_probs += probs
    full_probs /= len(scales)
    return full_probs
inputs.py 文件源码 项目:tf_classification 作者: visipedia 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def prepare_image(image, input_height=299, input_width=299):
  """ Prepare an image to be passed through a network.
  Arguments:
    image (numpy.ndarray): An uint8 RGB image
  Returns:
    list: the image resized, centered and raveled
  """

  # We assume an uint8 RGB image
  assert image.dtype == np.uint8
  assert image.ndim == 3
  assert image.shape[2] == 3

  resized_image = imresize(image, (input_height, input_width, 3))
  float_image = resized_image.astype(np.float32)
  centered_image = ((float_image / 255.) - 0.5) * 2.0

  return centered_image.ravel().tolist()
kitti_new.py 文件源码 项目:learning-to-see-by-moving 作者: pulkitag 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def resize_images(prms):
    seqNum = range(11)
    rawStr = ['rawLeftImFile', 'rawRightImFile']
    imStr  = ['leftImFile', 'rightImFile']
    num    = ku.get_num_images()
    for raw, new in zip(rawStr, imStr):
        for seq in seqNum:
            N = num[seq]
            print seq, N, raw, new
            rawNames = [prms['paths'][raw] % (seq,i) for i in range(N)]          
            newNames = [prms['paths'][new] % (seq,i) for i in range(N)]
            dirName = os.path.dirname(newNames[0])
            if not os.path.exists(dirName):
                os.makedirs(dirName)
            for rawIm, newIm in zip(rawNames, newNames):
                im = scm.imread(rawIm)
                im = scm.imresize(im, [256, 256])   
                scm.imsave(newIm, im)

##
# Save images as jpgs.
nail.py 文件源码 项目:Virtual-Makeup 作者: badarsh2 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def applyTexture(x, y, texture = texture_input):
    text = imread(texture_input)
    height,width = text.shape[:2]
    xmin, ymin = amin(x),amin(y)
    xmax, ymax = amax(x),amax(y)
    scale = max(((xmax - xmin + 2)/height),((ymax - ymin + 2)/width))
    text = imresize(text, scale)
    # print text.shape[:2]
    # print xmax - xmin +2, ymax - ymin+2
    X = (x-xmin).astype(int)
    Y = (y-ymin).astype(int)
    val1 = color.rgb2lab((text[X, Y]/255.).reshape(len(X), 1, 3)).reshape(len(X), 3)
    val2 = color.rgb2lab((im[x, y]/255.).reshape(len(x), 1, 3)).reshape(len(x), 3)
    L, A, B = mean(val2[:,0]), mean(val2[:,1]), mean(val2[:,2])
    val2[:, 0] = np.clip(val2[:, 0] - L + val1[:,0], 0, 100)
    val2[:, 1] = np.clip(val2[:, 1] - A + val1[:,1], -127, 128)
    val2[:, 2] = np.clip(val2[:, 2] - B + val1[:,2], -127, 128)
    im[x,y] = color.lab2rgb(val2.reshape(len(x), 1, 3)).reshape(len(x), 3)*255

# points = np.loadtxt('nailpoint_5')
data2lmdb.py 文件源码 项目:train-CRF-RNN 作者: martinkersner 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess_data(img, preprocess_mode, im_sz, data_mode):
  if preprocess_mode == 'pad':

    if data_mode == 'image':
      img = np.pad(img, ((0, im_sz-img.shape[0]), (0, im_sz-img.shape[1]), (0,0)), 'constant', constant_values=(0))
    elif data_mode == 'label':
      img = np.pad(img, ((0, im_sz-img.shape[0]), (0, im_sz-img.shape[1])), 'constant', constant_values=(0))
    else:
      print('Invalid data mode.', file=sys.stderr)

  elif preprocess_mode == 'res':
    img = imresize(img, (im_sz, im_sz), interp='bilinear')
  else:
    print('Invalid preprocess mode.', file=sys.stderr)

  return img
matting.py 文件源码 项目:Deep-Image-Matting 作者: Joker316701882 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load_alphamatting_data(test_alpha):
    rgb_path = os.path.join(test_alpha,'rgb')
    trimap_path = os.path.join(test_alpha,'trimap')
    alpha_path = os.path.join(test_alpha,'alpha')   
    images = os.listdir(trimap_path)
    test_num = len(images)
    all_shape = []
    rgb_batch = []
    tri_batch = []
    alp_batch = []
    for i in range(test_num):
        rgb = misc.imread(os.path.join(rgb_path,images[i]))
        trimap = misc.imread(os.path.join(trimap_path,images[i]),'L')
        alpha = misc.imread(os.path.join(alpha_path,images[i]),'L')/255.0
        all_shape.append(trimap.shape)
        rgb_batch.append(misc.imresize(rgb,[320,320,3])-g_mean)
        trimap = misc.imresize(trimap,[320,320],interp = 'nearest').astype(np.float32)
        tri_batch.append(np.expand_dims(trimap,2))
        alp_batch.append(alpha)
    return np.array(rgb_batch),np.array(tri_batch),np.array(alp_batch),all_shape,images
matting.py 文件源码 项目:Deep-Image-Matting 作者: Joker316701882 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def load_validation_data(vali_root):
    alpha_dir = os.path.join(vali_root,'alpha')
    RGB_dir = os.path.join(vali_root,'RGB')
    images = os.listdir(alpha_dir)
    test_num = len(images)

    all_shape = []
    rgb_batch = []
    tri_batch = []
    alp_batch = []

    for i in range(test_num):
        rgb = misc.imread(os.path.join(RGB_dir,images[i]))
        alpha = misc.imread(os.path.join(alpha_dir,images[i]),'L') 
        trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
        alpha = alpha / 255.0
        all_shape.append(trimap.shape)
        rgb_batch.append(misc.imresize(rgb,[320,320,3])-g_mean)
        trimap = misc.imresize(trimap,[320,320],interp = 'nearest').astype(np.float32)
        tri_batch.append(np.expand_dims(trimap,2))
        alp_batch.append(alpha)
    return np.array(rgb_batch),np.array(tri_batch),np.array(alp_batch),all_shape,images
test.py 文件源码 项目:Deep-Image-Matting 作者: Joker316701882 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main(args):

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = args.gpu_fraction)
    with tf.Session(config=tf.ConfigProto(gpu_options = gpu_options)) as sess:
        saver = tf.train.import_meta_graph('./meta_graph/my-model.meta')
        saver.restore(sess,tf.train.latest_checkpoint('./model'))
        image_batch = tf.get_collection('image_batch')[0]
        GT_trimap = tf.get_collection('GT_trimap')[0]
        pred_mattes = tf.get_collection('pred_mattes')[0]

        rgb = misc.imread(args.rgb)
        alpha = misc.imread(args.alpha,'L')
        trimap = generate_trimap(np.expand_dims(np.copy(alpha),2),np.expand_dims(alpha,2))[:,:,0]
        origin_shape = alpha.shape
        rgb = np.expand_dims(misc.imresize(rgb.astype(np.uint8),[320,320,3]).astype(np.float32)-g_mean,0)
        trimap = np.expand_dims(np.expand_dims(misc.imresize(trimap.astype(np.uint8),[320,320],interp = 'nearest').astype(np.float32),2),0)

        feed_dict = {image_batch:rgb,GT_trimap:trimap}
        pred_alpha = sess.run(pred_mattes,feed_dict = feed_dict)
        final_alpha = misc.imresize(np.squeeze(pred_alpha),origin_shape)
        # misc.imshow(final_alpha)
        misc.imsave('./alpha.png',final_alpha)
BatchDatsetReader.py 文件源码 项目:FCN-GoogLeNet 作者: DeepSegment 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _transform(self, filename, flag = False):
        if flag:
            image = np.array(Image.open(filename), dtype=np.uint8)
            image[image == 255] = 21
        else:
            image = misc.imread(filename)

        if self.__channels and len(image.shape) < 3:  # make sure images are of shape(h,w,3)
            image = np.array([image for i in range(3)])

        if self.image_options.get("resize", False) and self.image_options["resize"]:
            resize_size = int(self.image_options["resize_size"])
            resize_image = misc.imresize(image,
                                         [resize_size, resize_size], interp='nearest')
        else:
            resize_image = image

        return np.array(resize_image)
image_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_graphcut():
    import matplotlib.pyplot as plt
    from scipy.misc import lena
    im = lena()
    # Any bigger and my weak laptop gets memory errors
    bounds = (50, 50)
    im = imresize(im, bounds, interp="bicubic")
    all_matches, all_splits = graphcut(im, split_type="mean")

    to_plot = all_splits[-1]
    f, axarr = plt.subplots(2, len(to_plot) // 2)
    for n in range(len(to_plot)):
        axarr.ravel()[n].imshow(to_plot[n], cmap="gray")
        axarr.ravel()[n].set_xticks([])
        axarr.ravel()[n].set_yticks([])
    plt.show()
box_seg.py 文件源码 项目:icyface_api 作者: bupticybee 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def segment(self,img,box,landmarks):
        left,top,right,bottom = box
        avglr = int((left + right) / 2)
        avgtb = int((top + bottom) / 2)
        r_cir = int(max((right - left),(bottom - top) )/ 2)
        if isinstance(self.margin,int):
            margin = self.margin
        elif isinstance(self.margin,float):
            margin = r_cir * self.margin
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(left-margin/2, 0)
        bb[1] = np.maximum(top-margin/2, 0)
        bb[2] = np.minimum(right+margin/2, img.shape[1])
        bb[3] = np.minimum(bottom+margin/2, img.shape[0])
        cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
        scaled = misc.imresize(cropped, (self.img_size, self.img_size), interp='bilinear')
        return [('expand-align',scaled)]
segment.py 文件源码 项目:icyface_api 作者: bupticybee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def segment(self,img,box,landmarks):
        left,top,right,bottom = box
        avglr = int((left + right) / 2)
        avgtb = int((top + bottom) / 2)
        r_cir = int(max((right - left),(bottom - top) )/ 2)
        if isinstance(self.margin,int):
            margin = self.margin
        elif isinstance(self.margin,float):
            margin = r_cir * self.margin
        bb = np.zeros(4, dtype=np.int32)
        bb[0] = np.maximum(left-margin/2, 0)
        bb[1] = np.maximum(top-margin/2, 0)
        bb[2] = np.minimum(right+margin/2, img.shape[1])
        bb[3] = np.minimum(bottom+margin/2, img.shape[0])
        cropped = img[bb[1]:bb[3],bb[0]:bb[2],:]
        scaled = misc.imresize(cropped, (self.img_size, self.img_size), interp='bilinear')
        return [('expand-align',scaled)]
flappy_double_dqn.py 文件源码 项目:DeepRL-FlappyBird 作者: hashbangCoder 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def run_pretrained(input_state,model,action_states,gameState):
    print '\n\nLoading pretrained weights onto model...'

    model.load_weights(p.PRETRAINED_PATH)
    epsilon=1
    while True:
        print 'Running pretrained model (no exploration) with weights at ', p.PRETRAINED_PATH 

        nn_out = model.predict(input_state,batch_size=1,verbose=0)
        nn_action = [[0,0]]
        nn_action[0][np.argmax(nn_out)] =1
        action,rand_flag = select_action(nn_action+action_states,prob=[epsilon,(1-epsilon)*1/7,(1-epsilon)*6/7])
        rgbDisplay, reward, tState = gameState.frame_step(action)
        grayDisplay = (np.dot(np.fliplr(imrotate(imresize(rgbDisplay, (80,80), interp='bilinear'), -90))[:,:,:3], [0.299, 0.587, 0.114])).reshape((1,1,80,80))
        output_state = np.append(grayDisplay,input_state[:,:p.HISTORY-1,:,:], axis=1)


#############################################################################################################################################################################
ilsvrc_cls_multithread_scipy.py 文件源码 项目:tensorflow_yolo2 作者: wenxichen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def image_read(self, imname):
        image = misc.imread(imname, mode='RGB').astype(np.float)
        r,c,ch = image.shape
        if r < 299 or c < 299:
            # TODO: check too small images
            # print "##too small!!"
            image = misc.imresize(image, (299, 299, 3))
        elif r > 299 or c > 299:
            image = image[(r-299)/2 : (r-299)/2 + 299, (c-299)/2 : (c-299)/2 + 299, :]
        # print r, c, image.shape
        assert image.shape == (299, 299, 3)
        image = (image / 255.0) * 2.0 - 1.0
        if self.random_noise:
            add_noise = bool(random.getrandbits(1))
            if add_noise:
                eps = random.choice([4.0, 8.0, 12.0, 16.0]) / 255.0 * 2.0
                noise_image = image + eps * np.random.choice([-1, 1], (299,299,3))
                image = np.clip(noise_image, -1.0, 1.0)
        return image
getImgs.py 文件源码 项目:crawl-dataset 作者: e-lab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def resizeImg(imgPath,img_size):
    try:
        img = imread(imgPath)
        h, w, _ = img.shape
        scale = 1
        if w >= h:
            new_w = img_size
            if w  >= new_w:
                scale = float(new_w) / w
            new_h = int(h * scale)
        else:
            new_h = img_size
            if h >= new_h:
                scale = float(new_h) / h
            new_w = int(w * scale)
        new_img = imresize(img, (new_h, new_w), interp='bilinear')
        imsave(imgPath,new_img)
        print('Img Resized as {}'.format(img_size))
    except Exception as e:
        print(e)
getImages.py 文件源码 项目:crawl-dataset 作者: e-lab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def resizeImg(imgPath,img_size):
    img = imread(imgPath)
    h, w, _ = img.shape
    scale = 1
    if w >= h:
        new_w = img_size
        if w  >= new_w:
            scale = float(new_w) / w
        new_h = int(h * scale)
    else:
        new_h = img_size
        if h >= new_h:
            scale = float(new_h) / h
        new_w = int(w * scale)
    new_img = imresize(img, (new_h, new_w), interp='bilinear')
    imsave(imgPath,new_img)

#Download img
#Later we can do multi thread apply workers to do faster work
getImgs.py 文件源码 项目:crawl-dataset 作者: e-lab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def resizeImg(imgPath,img_size):
    img = imread(imgPath)
    h, w, _ = img.shape
    scale = 1
    if w >= h:
        new_w = img_size
        if w  >= new_w:
            scale = float(new_w) / w
        new_h = int(h * scale)
    else:
        new_h = img_size
        if h >= new_h:
            scale = float(new_h) / h
        new_w = int(w * scale)
    new_img = imresize(img, (new_h, new_w), interp='bilinear')
    imsave(imgPath,new_img)
    print('Img Resized as {}'.format(img_size))
data.py 文件源码 项目:hintbot 作者: madebyollin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def sliceImages(inputImage, targetImage):
    inputSlices = []
    targetSlices = []
    sliceSize = 32
    for y in range(0,inputImage.shape[1]//sliceSize):
        for x in range(0,inputImage.shape[0]//sliceSize):
            inputSlice = inputImage[x*sliceSize:(x+1)*sliceSize,y*sliceSize:(y+1)*sliceSize]
            targetSlice = targetImage[x*sliceSize//2:(x+1)*sliceSize//2,y*sliceSize//2:(y+1)*sliceSize//2]
            # only add slices if they're not just empty space
            # if (np.any(targetSlice)):
                # Reweight smaller sizes
                # for i in range(0,max(1,128//inputImage.shape[1])**2):
            inputSlices.append(inputSlice)
            targetSlices.append(targetSlice)
                # inputSlices.append(np.fliplr(inputSlice))
                # targetSlices.append(np.fliplr(targetSlice))
                # inputSlices.append(np.flipud(inputSlice))
                # targetSlices.append(np.flipud(targetSlice))

                    # naiveSlice = imresize(inputSlice, 0.5)
                    # deltaSlice = targetSlice - naiveSlice
                    # targetSlices.append(deltaSlice)
    # return two arrays of images in a tuple
    return (inputSlices, targetSlices)
mask_transfer.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_mask(mask_path, shape):
    mask = imread(mask_path, mode="L") # Grayscale mask load
    width, height, _ = shape
    mask = imresize(mask, (width, height), interp='bicubic').astype('float32')

    # Perform binarization of mask
    mask[mask <= 127] = 0
    mask[mask > 128] = 255

    max = np.amax(mask)
    mask /= max

    return mask


# util function to apply mask to generated image
MRFNetwork.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def preprocess_image(image_path, load_dims=False, style_image=False):
    global img_WIDTH, img_HEIGHT, aspect_ratio, b_scale_ratio_height, b_scale_ratio_width

    img = imread(image_path, mode="RGB") # Prevents crashes due to PNG images (ARGB)
    if load_dims:
        img_WIDTH = img.shape[0]
        img_HEIGHT = img.shape[1]
        aspect_ratio = img_HEIGHT / img_WIDTH

    if style_image:
        b_scale_ratio_width = float(img.shape[0]) / img_WIDTH
        b_scale_ratio_height = float(img.shape[1]) / img_HEIGHT

    img = imresize(img, (img_width, img_height))
    img = img.transpose((2, 0, 1)).astype('float64')
    img = np.expand_dims(img, axis=0)
    return img

# util function to convert a tensor into a valid image
DataTransformer.py 文件源码 项目:chainer-deconv 作者: germanRos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def transformData(self, data):
        if(self.opts.has_key('newdims')):
            (H, W) = self.opts['newdims']
            data = misc.imresize(data, (H, W), interp='bilinear')

        if(self.opts.has_key('zeromean') and self.opts['zeromean']):
            mean = self.opts['dataset_mean'] # provided by bmanager
            data = data - mean


        if(self.opts.has_key('rangescale') and self.opts['rangescale']):
            min_ = self.opts['dataset_min']  # provided by bmanager
            min_ = np.abs(min_.min())
            max_ = self.opts['dataset_max']  # provided by bmanager
            max_ = np.abs(max_.max())
            data = 127 * data / max(min_, max_)
        else:
            data = data - 127.0

        return data


问题


面经


文章

微信
公众号

扫码关注公众号