python类imread()的实例源码

mask_transfer.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_mask(mask_path, shape):
    mask = imread(mask_path, mode="L") # Grayscale mask load
    width, height, _ = shape
    mask = imresize(mask, (width, height), interp='bicubic').astype('float32')

    # Perform binarization of mask
    mask[mask <= 127] = 0
    mask[mask > 128] = 255

    max = np.amax(mask)
    mask /= max

    return mask


# util function to apply mask to generated image
MRFNetwork.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess_image(image_path, load_dims=False, style_image=False):
    global img_WIDTH, img_HEIGHT, aspect_ratio, b_scale_ratio_height, b_scale_ratio_width

    img = imread(image_path, mode="RGB") # Prevents crashes due to PNG images (ARGB)
    if load_dims:
        img_WIDTH = img.shape[0]
        img_HEIGHT = img.shape[1]
        aspect_ratio = img_HEIGHT / img_WIDTH

    if style_image:
        b_scale_ratio_width = float(img.shape[0]) / img_WIDTH
        b_scale_ratio_height = float(img.shape[1]) / img_HEIGHT

    img = imresize(img, (img_width, img_height))
    img = img.transpose((2, 0, 1)).astype('float64')
    img = np.expand_dims(img, axis=0)
    return img

# util function to convert a tensor into a valid image
load_dataset.py 文件源码 项目:DPED 作者: aiff22 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_test_data(phone, dped_dir, IMAGE_SIZE):

    test_directory_phone = dped_dir + str(phone) + '/test_data/patches/' + str(phone) + '/'
    test_directory_dslr = dped_dir + str(phone) + '/test_data/patches/canon/'

    NUM_TEST_IMAGES = len([name for name in os.listdir(test_directory_phone)
                           if os.path.isfile(os.path.join(test_directory_phone, name))])

    test_data = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))
    test_answ = np.zeros((NUM_TEST_IMAGES, IMAGE_SIZE))

    for i in range(0, NUM_TEST_IMAGES):

        I = np.asarray(misc.imread(test_directory_phone + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_data[i, :] = I

        I = np.asarray(misc.imread(test_directory_dslr + str(i) + '.jpg'))
        I = np.float16(np.reshape(I, [1, IMAGE_SIZE]))/255
        test_answ[i, :] = I

        if i % 100 == 0:
            print(str(round(i * 100 / NUM_TEST_IMAGES)) + "% done", end="\r")

    return test_data, test_answ
app.py 文件源码 项目:mnist-flask 作者: akashdeepjassal 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predict():
    # get data from drawing canvas and save as image
    parseImage(request.get_data())

    # read parsed image back in 8-bit, black and white mode (L)
    x = imread('output.png', mode='L')
    x = np.invert(x)
    x = imresize(x,(28,28))

    # reshape image data for use in neural network
    x = x.reshape(1,28,28,1)
    with graph.as_default():
        out = model.predict(x)
        print(out)
        print(np.argmax(out, axis=1))
        response = np.array_str(np.argmax(out, axis=1))
        return response
preprocess.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process_mot(path):
    '''
    1920 x 1080 -> 384 x 216
    640 x 480 -> 320 x 240
    '''
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                if img.shape == LARGE_IMAGE_SIZE:
                    img = misc.imresize(img, size=LARGE_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                elif img.shape == MEDIUM_IMAGE_SIZE:
                    img = misc.imresize(img, size=MEDIUM_IMAGE_RESCALE)
                    img = pad_image(img, FINAL_IMAGE_SIZE)
                else:
                    print("Unexpected shape " + str(img.shape))
                    continue
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
    return images
preprocess_vot.py 文件源码 项目:cs234_final_project 作者: nipunagarwala 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def process_vot(path, min_height, min_width):
    images = []
    for dirpath, dirnames, filenames in os.walk(path):
        img_shape = None
        pad_height = 0
        pad_width = 0
        for filename in filenames:
            if filename[-4:] == ".jpg" and "_ds" not in filename:
                full_path = os.path.join(dirpath, filename)
                img = misc.imread(full_path,mode='RGB')
                img_shape = img.shape
                ratio = min(float(min_width)/img.shape[1], float(min_height)/img.shape[0])
                img = misc.imresize(img, size=ratio)
                img, pad_height, pad_width = pad_image(img, (min_height, min_width))
                output_filename = os.path.join(dirpath, filename[:-4] + "_ds.jpg")
                misc.imsave(output_filename, img)
                images.append(output_filename)
        if img_shape:
            gt_path = os.path.join(dirpath, "groundtruth.txt")
            preprocess_label(gt_path, ratio, img_shape, min_height, min_width, pad_height, pad_width)
    return images
camvector.py 文件源码 项目:nnp 作者: dribnet 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def do_roc(self):
        if self.gan_mode and self.dmodel2 is not None:
            dmodel_cur = self.dmodel2
            scale_factor = 2
        elif self.dmodel is not None:
            dmodel_cur = self.dmodel
            scale_factor = self.scale_factor
        else:
            theApp.cur_hist_tex = theApp.standard_hist_tex
            theApp.cur_roc_tex = theApp.standard_roc_tex
            return
        encoded_vector_source = self.get_encoded(dmodel_cur, self.cur_vector_source, scale_factor)
        encoded_vector_dest = self.get_encoded(dmodel_cur, self.cur_vector_dest, scale_factor)
        attribute_vector = encoded_vector_dest - encoded_vector_source
        threshold = None
        outfile = "{}/{}".format(roc_dir, get_date_str())
        do_roc(attribute_vector, encoded, attribs, attribute_index, threshold, outfile)
        hist_img = imread("{}_hist_both.png".format(outfile), mode='RGB')
        roc_img = imread("{}_roc.png".format(outfile), mode='RGB')
        hist_img = imresize(hist_img, roc_image_resize)
        roc_img = imresize(roc_img, roc_image_resize)
        theApp.cur_hist_tex = image_to_texture(hist_img)
        theApp.cur_roc_tex = image_to_texture(roc_img)
process_data.py 文件源码 项目:behavioral-cloning 作者: BillZito 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def save_images(img_dir, dest_file):
  img_list = os.listdir(img_dir)
  img_combo = []

  print('starting to save ' + str(len(img_list)) + ' images')

  count = 0
  for img_name in img_list:
    # can change this line to img_name.startswith('center') for center imgs
    if not img_name.startswith('.'):

      if count % 500 == 0:
        print('count is', count)

      img = misc.imread(img_dir + '/' + img_name)
      img_combo.append(img)
      count += 1

  #cast to numpy array and save to file
  all_images = np.array(img_combo)
  print('images shape', all_images.shape)
  np.save(dest_file, all_images)
process_data.py 文件源码 项目:behavioral-cloning 作者: BillZito 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def show_file_images(filename, img_list):
  fig = plt.figure()

  #for 9 random images, print them 
  for img_num in range(0, 9):
    random_num = random.randint(0, len(img_list))
    img_name = img_list[random_num]
    print('image name is ', img_name)
    img = misc.imread(filename + img_name)
    np_img = np.array(img)
    flipped_img = np.fliplr(np_img)[60:160]

    # print('img is ', img)
    img = img[60:160]
    fig.add_subplot(5, 5, img_num * 2 + 1)
    plt.imshow(img)
    fig.add_subplot(5, 5, img_num * 2 + 2)
    plt.imshow(flipped_img)

  plt.show()
process_data.py 文件源码 项目:behavioral-cloning 作者: BillZito 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def count_images(img_dir):
  #add each to img_combo
  img_list = os.listdir(img_dir)
  l_count = 0
  c_count = 0
  r_count =0
  for img_name in img_list:
    if img_name.startswith('center'):
      c_count += 1
    elif img_name.startswith('left'):
      l_count += 1
    elif img_name.startswith('right'):
      r_count +=1
      # img = misc.imread(img_dir + '/' + img_name)
      # img_combo.append(img)
  print('counts l, c, r:', l_count, c_count, r_count)
utils.py 文件源码 项目:face 作者: xpzouying 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_images_from_request(request_file, names):
    """get pillow images from flask request

    @input: request_file: request.files
    @input: names: image name list for read
    @output: type ndarray. The array obtained by reading the image.
    """

    img_list = []
    for name in names:
        # get upload file
        f = request_file.get(name)
        if f is None:
            continue

        img = misc.imread(f)
        img_list.append(img)

    return img_list
recognition.py 文件源码 项目:Captcha-recognition-TF 作者: dukn 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def view_(_pred,_lable):

    fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
    img = []
    for fn in fname:
        img.append(Image.open(open(fn)))
        #img.append(misc.imread(fn).astype(np.float))
    for i in range(len(img)):
        pylab.subplot(4,5,i+1); pylab.axis('off')

        pylab.imshow(img[i])
        #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
        #pylab.text(40,60,_pred[i],color = 'b')
        if ( _pred[i] == _lable[i] ):
            pylab.text(40,65,_pred[i],color = 'b',size = 15)
        else:
            pylab.text(40,65,_pred[i],color = 'r',size = 15)

        pylab.text(40,92,_lable[i],color = 'g',size = 15)

    pylab.show()
utils.py 文件源码 项目:bird_classification 作者: halwai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_batch(generator_type, set_type, height, width):
    imgs = []
    if set_type == 'train' or set_type == 'val':
        for paths, bbs, labels in generator_type:
            for i  in range(len(paths)):
                img = gray2rgb(misc.imread(paths[i]), paths[i])
                img = img[bbs[i][1]:bbs[i][1]+bbs[i][3], bbs[i][0]:bbs[i][0]+bbs[i][2],:]
                img = preprocess_image(img, height, width, set_type)
                imgs.append(img)
            imgs = np.asarray(imgs)
            break
        return imgs, labels
    else:
        for paths, bbs in generator_type:
            for i  in range(len(paths)):
                img = gray2rgb(misc.imread(paths[i]), paths[i])
                img = img[bbs[i][1]:bbs[i][1]+bbs[i][3], bbs[i][0]:bbs[i][0]+bbs[i][2],:]
                imgs.append(preprocess_image(img, height, width, set_type))
            imgs = np.asarray(imgs)
            break
        return imgs, None



#store in required csv format
get_dataset.py 文件源码 项目:Cat-Segmentation 作者: ardamavi 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_img(data_path):
    # Getting image array from path:
    img = imread(data_path)
    img = imresize(img, (64, 64))
    return img
feedforward.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def readimg(img_path):
    img = misc.imread(img_path, mode='RGB')

    img = misc.imresize(img, (160, 160))
    img = facenet.prewhiten(img)
    img = np.expand_dims(img, axis=0)

    return img
feedforward.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_embedding(img_path):
    img = misc.imread(img_path, mode='RGB')

    # judge alignment
    aligned = align.align(160, img, [0, 0, img.shape[1], img.shape[0]], landmarkIndices=landmarkIndices)


    img = facenet.prewhiten(img)
    img = np.expand_dims(img, axis=0)

    aligned = facenet.prewhiten(aligned)
    aligned = np.expand_dims(aligned, axis=0)


    # Run forward pass to calculate embeddings
    feed_dict = {images_placeholder: img, phase_train_placeholder: False}
    emb = sess.run(embeddings, feed_dict=feed_dict)

    # Run forward pass to calculate embeddings
    feed_dict_aligned = {images_placeholder: aligned, phase_train_placeholder: False}
    emb_aligned = sess.run(embeddings, feed_dict=feed_dict_aligned)

    return emb.ravel(), emb_aligned.ravel()

# # for test
# import os
# from time import time
# def main(dir_path):
#     img_all = os.listdir(dir_path)
#     for f in img_all:
#         start = time()
#         embedding_result = get_embedding(os.path.join(dir_path, f))
#         print time() - start
#         print embedding_result
#
# main('./data')
facenet.py 文件源码 项目:facerecognition 作者: guoxiaolu 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_data(image_paths, do_random_crop, do_random_flip, image_size, do_prewhiten=True):
    nrof_samples = len(image_paths)
    images = np.zeros((nrof_samples, image_size, image_size, 3))
    for i in range(nrof_samples):
        img = misc.imread(image_paths[i])
        if img.ndim == 2:
            img = to_rgb(img)
        if do_prewhiten:
            img = prewhiten(img)
        img = crop(img, do_random_crop, image_size)
        img = flip(img, do_random_flip)
        images[i,:,:,:] = img
    return images
visual_search.py 文件源码 项目:visual-search 作者: GYXie 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_image(img_file_path):
    img = imread(img_file_path)
    img = (imresize(img, (227, 227))[:, :, :3]).astype(float32)
    img = img - mean(img)

    return img
classification.py 文件源码 项目:visual-search 作者: GYXie 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_images(image_names):
    imgs = []
    for img_name in image_names:
        img = imread(img_name)
        img = (imresize(img, (227, 227))[:, :, :3]).astype(float32)
        img = img - mean(img)
        imgs.append(img)
    return imgs
image_rotate.py 文件源码 项目:visual-search 作者: GYXie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main():
    img = imread(args.input_path)
    img = ndimage.rotate(img, args.angle, mode=args.mode)
    misc.imsave(args.output_path, img)


问题


面经


文章

微信
公众号

扫码关注公众号