python类cho_solve()的实例源码

ssinfer.py 文件源码 项目:icinco-code 作者: jacobnzw 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def _smoothing_update(self):
        gain = cho_solve(cho_factor(self.x_cov_pred), self.xx_cov).T
        self.x_mean_smooth = self.x_mean_filt + gain.dot(self.x_mean_smooth - self.x_mean_pred)
        self.x_cov_smooth = self.x_cov_filt + gain.dot(self.x_cov_smooth - self.x_cov_pred).dot(gain.T)
bayesquad.py 文件源码 项目:icinco-code 作者: jacobnzw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def weights_rbf(self, unit_sp, hypers):
        # BQ weights for RBF kernel with given hypers, computations adopted from the GP-ADF code [Deisenroth] with
        # the following assumptions:
        #   (A1) the uncertain input is zero-mean with unit covariance
        #   (A2) one set of hyper-parameters is used for all output dimensions (one GP models all outputs)
        d, n = unit_sp.shape
        # GP kernel hyper-parameters
        alpha, el, jitter = hypers['sig_var'], hypers['lengthscale'], hypers['noise_var']
        assert len(el) == d
        # pre-allocation for convenience
        eye_d, eye_n = np.eye(d), np.eye(n)
        iLam1 = np.atleast_2d(np.diag(el ** -1))  # sqrt(Lambda^-1)
        iLam2 = np.atleast_2d(np.diag(el ** -2))

        inp = unit_sp.T.dot(iLam1)  # sigmas / el[:, na] (x - m)^T*sqrt(Lambda^-1) # (numSP, xdim)
        K = np.exp(2 * np.log(alpha) - 0.5 * maha(inp, inp))
        iK = cho_solve(cho_factor(K + jitter * eye_n), eye_n)
        B = iLam2 + eye_d  # (D, D)
        c = alpha ** 2 / np.sqrt(det(B))
        t = inp.dot(inv(B))  # inn*(P + Lambda)^-1
        l = np.exp(-0.5 * np.sum(inp * t, 1))  # (N, 1)
        zet = 2 * np.log(alpha) - 0.5 * np.sum(inp * inp, 1)
        inp = inp.dot(iLam1)
        R = 2 * iLam2 + eye_d
        t = 1 / np.sqrt(det(R))
        L = np.exp((zet[:, na] + zet[:, na].T) + maha(inp, -inp, V=0.5 * inv(R)))
        q = c * l  # evaluations of the kernel mean map (from the viewpoint of RHKS methods)
        # mean weights
        wm_f = q.dot(iK)
        iKQ = iK.dot(t * L)
        # covariance weights
        wc_f = iKQ.dot(iK)
        # cross-covariance "weights"
        wc_fx = np.diag(q).dot(iK)
        # used for self.D.dot(x - mean).dot(wc_fx).dot(fx)
        self.D = inv(eye_d + np.diag(el ** 2))  # S(S+Lam)^-1; for S=I, (I+Lam)^-1
        # model variance; to be added to the covariance
        # this diagonal form assumes independent GP outputs (cov(f^a, f^b) = 0 for all a, b: a neq b)
        self.model_var = np.diag((alpha ** 2 - np.trace(iKQ)) * np.ones((d, 1)))
        return wm_f, wc_f, wc_fx
bayesquad.py 文件源码 项目:icinco-code 作者: jacobnzw 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_gp_model(self, f, unit_sp, args, test_range=(-5, 5, 50), plot_dims=(0, 0)):
        # plot out_dim vs. in_dim
        in_dim, out_dim = plot_dims
        # test input must have the same dimension as specified in kernel
        test = np.linspace(*test_range)
        test_pts = np.zeros((self.d, len(test)))
        test_pts[in_dim, :] = test
        # function value observations at training points (unit sigma-points)
        y = np.apply_along_axis(f, 0, unit_sp, args)
        fx = np.apply_along_axis(f, 0, test_pts, args)  # function values at test points
        K = self.kern.K(unit_sp.T)  # covariances between sigma-points
        k = self.kern.K(test_pts.T, unit_sp.T)  # covariance between test inputs and sigma-points
        kxx = self.kern.Kdiag(test_pts.T)  # prior predictive variance
        k_iK = cho_solve(cho_factor(K), k.T).T
        gp_mean = k_iK.dot(y[out_dim, :])  # GP mean
        gp_var = np.diag(np.diag(kxx) - k_iK.dot(k.T))  # GP predictive variance
        # plot the GP mean, predictive variance and the true function
        plt.figure()
        plt.plot(test, fx[out_dim, :], color='r', ls='--', lw=2, label='true')
        plt.plot(test, gp_mean, color='b', ls='-', lw=2, label='GP mean')
        plt.fill_between(test, gp_mean + 2 * np.sqrt(gp_var), gp_mean - 2 * np.sqrt(gp_var),
                         color='b', alpha=0.25, label='GP variance')
        plt.plot(unit_sp[in_dim, :], y[out_dim, :],
                 color='k', ls='', marker='o', ms=8, label='data')
        plt.legend()
        plt.show()
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _pull_from_cache_or_compute(self):
        if self.caching and len(self._cache_list) == self.num_states:
            chol  = self._cache_list[self.state]['chol']
            alpha = self._cache_list[self.state]['alpha']
        else:
            chol  = spla.cholesky(self.kernel.cov(self.inputs), lower=True)
            alpha = spla.cho_solve((chol, True), self.values - self.mean.value)

        return chol, alpha
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _prepare_cache(self):
        inputs_hash = hash(self.inputs.tostring())
        for i in xrange(self.num_states):
            self.set_state(i)
            chol  = spla.cholesky(self.kernel.cov(self.inputs), lower=True)
            alpha = spla.cho_solve((chol, True), self.values - self.mean.value)
            cache_dict = {
                'chol'  : chol,
                'alpha' : alpha
            }
            self._cache_list.append(cache_dict)
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def log_likelihood(self):
        """
        GP Marginal likelihood

        Notes
        -----
        This is called by the samplers when fitting the hyperparameters.
        """
        cov   = self.kernel.cov(self.observed_inputs)
        chol  = spla.cholesky(cov, lower=True)
        solve = spla.cho_solve((chol, True), self.observed_values - self.mean.value)

        # Uses the identity that log det A = log prod diag chol A = sum log diag chol A
        return -np.sum(np.log(np.diag(chol)))-0.5*np.dot(self.observed_values - self.mean.value, solve)
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _pull_from_cache_or_compute(self):
        if self.caching and len(self._cache_list) == self.num_states:
            chol  = self._cache_list[self.state]['chol']
            alpha = self._cache_list[self.state]['alpha']
        else:
            chol  = spla.cholesky(self.kernel.cov(self.inputs), lower=True)
            alpha = spla.cho_solve((chol, True), self.values - self.mean.value)

        return chol, alpha
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def log_likelihood(self):
        """
        GP Marginal likelihood

        Notes
        -----
        This is called by the samplers when fitting the hyperparameters.
        """
        cov   = self.kernel.cov(self.observed_inputs)
        chol  = spla.cholesky(cov, lower=True)
        solve = spla.cho_solve((chol, True), self.observed_values - self.mean.value)

        # Uses the identity that log det A = log prod diag chol A = sum log diag chol A
        return -np.sum(np.log(np.diag(chol)))-0.5*np.dot(self.observed_values - self.mean.value, solve)
abstract_process.py 文件源码 项目:Thor 作者: JamesBrofos 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def fit(self, X, y):
        """Fit the parameters of the probabilistic process based on the
        available training data.
        """
        # Store the training data (both the inputs and the targets).
        self.X, self.y = X, y
        # Compute the covariance matrix of the observed inputs.
        K = self.kernel.cov(self.X)
        # For a numerically stable algorithm, we use Cholesky decomposition.
        self.L = spla.cholesky(K, lower=True)
        self.alpha = spla.cho_solve((self.L, True), self.y).ravel()
        L_inv = spla.solve_triangular(self.L.T, np.eye(self.L.shape[0]))
        self.K_inv = L_inv.dot(L_inv.T)
        self.beta = self.y.dot(self.alpha)
gpnarx.py 文件源码 项目:pyflux 作者: RJT1990 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _construct_predict(self, beta, h):    
        """ Creates h-step ahead forecasts for the Gaussian process

        Parameters
        ----------
        beta : np.array
            Contains untransformed starting values for the latent variables

        h: int
            How many steps ahead to forecast

        Returns
        ----------
        - predictions
        - variance of predictions
        """             

        # Refactor this entire code in future
        parm = np.array([self.latent_variables.z_list[k].prior.transform(beta[k]) for k in range(beta.shape[0])])
        Xstart = self.X().copy()
        Xstart = [i for i in Xstart]
        predictions = np.zeros(h)
        variances = np.zeros(h)

        for step in range(0,h):
            Xstar = []

            for lag in range(0,self.max_lag):
                if lag == 0:
                    if step == 0:
                        Xstar.append([self.data[-1]])
                        Xstart[0] = np.append(Xstart[0],self.data[-1])
                    else:
                        Xstar.append([predictions[step-1]])
                        Xstart[0] = np.append(Xstart[0],predictions[step-1])
                else:
                    Xstar.append([Xstart[lag-1][-2]])
                    Xstart[lag] = np.append(Xstart[lag],Xstart[lag-1][-2])

            Kstar = self.kernel.Kstar(parm, np.transpose(np.array(Xstar)))

            L = self._L(parm)
            alpha = self._alpha(L)   

            predictions[step] = np.dot(np.transpose(Kstar), alpha)
            v = la.cho_solve((L, True), Kstar)
            variances[step] = self.kernel.Kstarstar(parm, np.transpose(np.array(Xstar))) - np.dot(v.T, v)

        return predictions, variances, predictions - 1.98*np.power(variances,0.5), predictions + 1.98*np.power(variances,0.5)
acquisition.py 文件源码 项目:elfi 作者: elfi-dev 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def evaluate(self, theta_new, t=None):
        """Evaluate the acquisition function at the location theta_new.

        Parameters
        ----------
        theta_new : array_like
            Evaluation coordinates.
        t : int, optional
            Current iteration, (unused).

        Returns
        -------
        array_like
            Expected loss's term dependent on theta_new.

        """
        gp = self.model
        n_imp, n_dim = self.points_int.shape
        # Alter the shape of theta_new.
        if n_dim != 1 and theta_new.ndim == 1:
            theta_new = theta_new[np.newaxis, :]
        elif n_dim == 1 and theta_new.ndim == 1:
            theta_new = theta_new[:, np.newaxis]

        # Calculate the integrand term w.
        # Note: w's second term (given in Järvenpää et al., 2017) is dismissed
        # because it is constant with respect to theta_new.
        _, var_new = gp.predict(theta_new, noiseless=True)
        k_old_new = self._K(self.thetas_old, theta_new)
        k_int_new = self._K(self.points_int, theta_new).T
        # Using the Cholesky factorisation to avoid computing matrix inverse.
        term_chol = sl.cho_solve(sl.cho_factor(self.K), k_old_new)
        cov_int = k_int_new - np.dot(self.k_int_old.T, term_chol).T
        delta_var_int = cov_int**2 / (self.sigma2_n + var_new)
        a = np.sqrt((self.sigma2_n + self.var_int.T - delta_var_int) /
                    (self.sigma2_n + self.var_int.T + delta_var_int))
        # Using the skewnorm's cdf to substitute the Owen's T function.
        phi_skew_imp = ss.skewnorm.cdf(self.eps, a, loc=self.mean_int.T,
                                       scale=np.sqrt(self.sigma2_n + self.var_int.T))
        w = ((self.phi_int - phi_skew_imp) / 2)

        loss_theta_new = 2 * np.sum(self.omegas_int * self.priors_int * w, axis=1)
        return loss_theta_new
signal_base.py 文件源码 项目:enterprise 作者: nanograv 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __call__(self, xs, phiinv_method='partition'):
        # map parameter vector if needed
        params = xs if isinstance(xs,dict) else self.pta.map_params(xs)

        # phiinvs will be a list or may be a big matrix if spatially
        # correlated signals
        TNrs = self.pta.get_TNr(params)
        TNTs = self.pta.get_TNT(params)
        phiinvs = self.pta.get_phiinv(params, logdet=True,
                                      method=phiinv_method)

        # get -0.5 * (rNr + logdet_N) piece of likelihood
        loglike = -0.5 * np.sum([l for l in self.pta.get_rNr_logdet(params)])

        # red noise piece
        if self.pta._commonsignals:
            phiinv, logdet_phi = phiinvs

            Sigma = self._make_sigma(TNTs, phiinv)
            TNr = np.concatenate(TNrs)

            cf = cholesky(Sigma)
            expval = cf(TNr)

            logdet_sigma = cf.logdet()

            loglike += 0.5*(np.dot(TNr, expval) - logdet_sigma - logdet_phi)
        else:
            for TNr, TNT, (phiinv, logdet_phi) in zip(TNrs, TNTs, phiinvs):
                Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv)

                try:
                    cf = sl.cho_factor(Sigma)
                    expval = sl.cho_solve(cf, TNr)
                except:
                    return -np.inf

                logdet_sigma = np.sum(2 * np.log(np.diag(cf[0])))

                loglike += 0.5*(np.dot(TNr, expval) -
                                logdet_sigma - logdet_phi)

        return loglike
signal_base.py 文件源码 项目:enterprise 作者: nanograv 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_phiinv_byfreq_cliques(self, params, logdet=False, cholesky=False):
        phi = self.get_phi(params, cliques=True)

        if isinstance(phi, list):
            return [None if phivec is None else phivec.inv(logdet)
                    for phivec in phi]
        else:
            ld = 0

            # first invert all the cliques
            for clcount in range(self._clcount):
                idx = (self._cliques == clcount)

                if np.any(idx):
                    idx2 = np.ix_(idx,idx)

                    if cholesky:
                        cf = sl.cho_factor(phi[idx2])

                        if logdet:
                            ld += 2.0*np.sum(np.log(np.diag(cf[0])))

                        phi[idx2] = sl.cho_solve(
                            cf, np.identity(cf[0].shape[0]))
                    else:
                        phi2 = phi[idx2]

                        if logdet:
                            ld += np.linalg.slogdet(phi2)[1]

                        phi[idx2] = np.linalg.inv(phi2)

            # then do the pure diagonal terms
            idx = (self._cliques == -1)

            if logdet:
                ld += np.sum(np.log(phi[idx,idx]))

            phi[idx,idx] = 1.0/phi[idx,idx]

            return (phi, ld) if logdet else phi

    # we use "cliques" to account for sparse non-diagonal Phi matrices
    # for each value in self._cliques, the matrix indices with that value form
    # an independent submatrix that can be inverted separately

    # reset clique index
nnls.py 文件源码 项目:tensortools 作者: ahwillia 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def normal_eq_comb(AtA, AtB, PassSet=None):
    """ Solve many systems of linear equations using combinatorial grouping.

    M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450

    Parameters
    ----------
    AtA : numpy.array, shape (n,n)
    AtB : numpy.array, shape (n,k)

    Returns
    -------
    (Z,num_cholesky,num_eq)
    Z : numpy.array, shape (n,k) - solution
    num_cholesky : int - the number of unique cholesky decompositions done
    num_eq: int - the number of systems of linear equations solved
    """
    num_cholesky = 0
    num_eq = 0
    if AtB.size == 0:
        Z = np.zeros([])
    elif (PassSet is None) or np.all(PassSet):
        Z = nla.solve(AtA, AtB)
        num_cholesky = 1
        num_eq = AtB.shape[1]
    else:
        Z = np.zeros(AtB.shape)
        if PassSet.shape[1] == 1:
            if np.any(PassSet):
                cols = PassSet.nonzero()[0]
                Z[cols] = nla.solve(AtA[np.ix_(cols, cols)], AtB[cols])
                num_cholesky = 1
                num_eq = 1
        else:
            #
            # Both _column_group_loop() and _column_group_recursive() work well.
            # Based on preliminary testing,
            # _column_group_loop() is slightly faster for tiny k(<10), but
            # _column_group_recursive() is faster for large k's.
            #
            grps = _column_group_recursive(PassSet)
            for gr in grps:
                cols = PassSet[:, gr[0]].nonzero()[0]
                if cols.size > 0:
                    ix1 = np.ix_(cols, gr)
                    ix2 = np.ix_(cols, cols)
                    #
                    # scipy.linalg.cho_solve can be used instead of numpy.linalg.solve.
                    # For small n(<200), numpy.linalg.solve appears faster, whereas
                    # for large n(>500), scipy.linalg.cho_solve appears faster.
                    # Usage example of scipy.linalg.cho_solve:
                    # Z[ix1] = sla.cho_solve(sla.cho_factor(AtA[ix2]),AtB[ix1])
                    #
                    Z[ix1] = nla.solve(AtA[ix2], AtB[ix1])
                    num_cholesky += 1
                    num_eq += len(gr)
                    num_eq += len(gr)
    return Z, num_cholesky, num_eq
nnls.py 文件源码 项目:Echobase 作者: akhambhati 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def normal_eq_comb(AtA, AtB, PassSet=None):
    """ Solve many systems of linear equations using combinatorial grouping.

    M. H. Van Benthem and M. R. Keenan, J. Chemometrics 2004; 18: 441-450

    Parameters
    ----------
    AtA : numpy.array, shape (n,n)
    AtB : numpy.array, shape (n,k)

    Returns
    -------
    (Z,num_cholesky,num_eq)
    Z : numpy.array, shape (n,k) - solution
    num_cholesky : int - the number of unique cholesky decompositions done
    num_eq: int - the number of systems of linear equations solved
    """
    num_cholesky = 0
    num_eq = 0
    if AtB.size == 0:
        Z = np.zeros([])
    elif (PassSet is None) or np.all(PassSet):
        Z = nla.solve(AtA, AtB)
        num_cholesky = 1
        num_eq = AtB.shape[1]
    else:
        Z = np.zeros(AtB.shape)
        if PassSet.shape[1] == 1:
            if np.any(PassSet):
                cols = PassSet.nonzero()[0]
                Z[cols] = nla.solve(AtA[np.ix_(cols, cols)], AtB[cols])
                num_cholesky = 1
                num_eq = 1
        else:
            #
            # Both _column_group_loop() and _column_group_recursive() work well.
            # Based on preliminary testing,
            # _column_group_loop() is slightly faster for tiny k(<10), but
            # _column_group_recursive() is faster for large k's.
            #
            grps = _column_group_recursive(PassSet)
            for gr in grps:
                cols = PassSet[:, gr[0]].nonzero()[0]
                if cols.size > 0:
                    ix1 = np.ix_(cols, gr)
                    ix2 = np.ix_(cols, cols)
                    #
                    # scipy.linalg.cho_solve can be used instead of numpy.linalg.solve.
                    # For small n(<200), numpy.linalg.solve appears faster, whereas
                    # for large n(>500), scipy.linalg.cho_solve appears faster.
                    # Usage example of scipy.linalg.cho_solve:
                    # Z[ix1] = sla.cho_solve(sla.cho_factor(AtA[ix2]),AtB[ix1])
                    #
                    Z[ix1] = nla.solve(AtA[ix2], AtB[ix1])
                    num_cholesky += 1
                    num_eq += len(gr)
                    num_eq += len(gr)
    return Z, num_cholesky, num_eq
bayesquad.py 文件源码 项目:icinco-code 作者: jacobnzw 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def weights_rbf(self, unit_sp, hypers):
        d, n = unit_sp.shape
        # GP kernel hyper-parameters
        alpha, el, jitter = hypers['sig_var'], hypers['lengthscale'], hypers['noise_var']
        assert len(el) == d
        # pre-allocation for convenience
        eye_d, eye_n, eye_y = np.eye(d), np.eye(n), np.eye(n + d * n)

        K = self.kern_eq_der(unit_sp, hypers)  # evaluate kernel matrix BOTTLENECK
        iK = cho_solve(cho_factor(K + jitter * eye_y), eye_y)  # invert kernel matrix BOTTLENECK
        Lam = np.diag(el ** 2)
        iLam = np.diag(el ** -1)  # sqrt(Lambda^-1)
        iiLam = np.diag(el ** -2)  # Lambda^-1
        inn = iLam.dot(unit_sp)  # (x-m)^T*iLam  # (N, D)
        B = iiLam + eye_d  # P*Lambda^-1+I, (P+Lam)^-1 = Lam^-1*(P*Lam^-1+I)^-1 # (D, D)
        cho_B = cho_factor(B)
        t = cho_solve(cho_B, inn)  # dot(inn, inv(B)) # (x-m)^T*iLam*(P+Lambda)^-1  # (D, N)
        l = np.exp(-0.5 * np.sum(inn * t, 0))  # (N, 1)
        q = (alpha ** 2 / np.sqrt(det(B))) * l  # (N, 1)
        Sig_q = cho_solve(cho_B, eye_d)  # B^-1*I
        eta = Sig_q.dot(unit_sp)  # (D,N) Sig_q*x
        mu_q = iiLam.dot(eta)  # (D,N)
        r = q[na, :] * iiLam.dot(mu_q - unit_sp)  # -t.dot(iLam) * q  # (D, N)
        q_tilde = np.hstack((q.T, r.T.ravel()))  # (1, N+N*D)

        # weights for mean
        wm = q_tilde.dot(iK)

        #  quantities for cross-covariance "weights"
        iLamSig = iiLam.dot(Sig_q)  # (D,D)
        r_tilde = (q[na, na, :] * iLamSig[..., na] + mu_q[na, ...] * r[:, na, :]).T.reshape(n * d, d).T  # (D, N*D)
        R_tilde = np.hstack((q[na, :] * mu_q, r_tilde))  # (D, N+N*D)

        # input-output covariance (cross-covariance) "weights"
        Wcc = R_tilde.dot(iK)  # (D, N+N*D)

        # quantities for covariance weights
        zet = 2 * np.log(alpha) - 0.5 * np.sum(inn * inn, 0)  # (D,N) 2log(alpha) - 0.5*(x-m)^T*Lambda^-1*(x-m)
        inn = iiLam.dot(unit_sp)  # inp / el[:, na]**2
        R = 2 * iiLam + eye_d  # 2P*Lambda^-1 + I
        # (N,N)
        Q = (1.0 / np.sqrt(det(R))) * np.exp((zet[:, na] + zet[:, na].T) + maha(inn.T, -inn.T, V=0.5 * solve(R, eye_d)))
        cho_LamSig = cho_factor(Lam + Sig_q)
        Sig_Q = cho_solve(cho_LamSig, Sig_q).dot(iiLam)  # (D,D) Lambda^-1 (Lambda*(Lambda+Sig_q)^-1*Sig_q) Lambda^-1
        eta_tilde = iiLam.dot(cho_solve(cho_LamSig, eta))  # Lambda^-1(Lambda+Sig_q)^-1*eta
        ETA = eta_tilde[..., na] + eta_tilde[:, na, :]  # (D,N,N) pairwise sum of pre-multiplied eta's (D,N,N)
        # mu_Q = ETA + in_mean[:, na]  # (D,N,N)
        xnmu = inn[..., na] - ETA  # (D,N,N) x_n - mu^Q_nm
        # xmmu = sigmas[:, na, :] - mu_Q  # x_m - mu^Q_nm
        E_dff = (-Q[na, ...] * xnmu).swapaxes(0, 1).reshape(d * n, n)
        # (D,D,N,N) (x_n - mu^Q_nm)(x_m - mu^Q_nm)^T + Sig_Q
        T = xnmu[:, na, ...] * xnmu.swapaxes(1, 2)[na, ...] + Sig_Q[..., na, na]
        E_dffd = (Q[na, na, ...] * T).swapaxes(0, 3).reshape(d * n, -1)  # (N*D, N*D)
        Q_tilde = np.vstack((np.hstack((Q, E_dff.T)), np.hstack((E_dff, E_dffd))))  # (N+N*D, N+N*D)

        # weights for covariance
        iKQ = iK.dot(Q_tilde)
        Wc = iKQ.dot(iK)
        # model variance
        self.model_var = np.diag((alpha ** 2 - np.trace(iKQ)) * np.ones((d, 1)))
        return wm, Wc, Wcc
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predict(self, pred, full_cov=False, compute_grad=False):
        inputs = self.inputs
        values = self.values

        # Special case if there is no data yet (everything from the prior)
        if inputs is None:
            return self.predict_from_prior(pred, full_cov, compute_grad)

        if pred.shape[1] != self.num_dims:
            raise Exception("Dimensionality of inputs must match dimensionality given at init time.")

        # The primary covariances for prediction.
        cand_cross = self.noiseless_kernel.cross_cov(inputs, pred)

        chol, alpha = self._pull_from_cache_or_compute()

        # Solve the linear systems.
        # Note: if X = LL^T, cho_solve performs X\b whereas solve_triangular performs L\b
        beta = spla.solve_triangular(chol, cand_cross, lower=True)

        # Predict the marginal means at candidates.
        func_m = np.dot(cand_cross.T, alpha) + self.mean.value

        if full_cov:
            # Return the covariance matrix of the pred inputs, 
            # rather than just the individual variances at each input
            cand_cov = self.noiseless_kernel.cov(pred)
            func_v = cand_cov - np.dot(beta.T, beta)
        else:
            cand_cov = self.noiseless_kernel.diag_cov(pred)
            func_v = cand_cov - np.sum(beta**2, axis=0)

        if not compute_grad:
            return func_m, func_v

        grad_cross = self.noiseless_kernel.cross_cov_grad_data(inputs, pred)
        grad_xp_m  = np.tensordot(np.transpose(grad_cross, (1,2,0)), alpha, 1)

        # this should be faster than (and equivalent to) spla.cho_solve((chol, True),cand_cross))
        gamma = spla.solve_triangular(chol.T, beta, lower=False)

        # Using sum and multiplication and summing instead of matrix multiplication
        # because I only want the diagonals of the gradient of the covariance matrix, not the whole thing
        grad_xp_v = -2.0*np.sum(gamma[:,:,np.newaxis] * grad_cross, axis=0)

        # Not very important -- just to make sure grad_xp_v.shape = grad_xp_m.shape
        if values.ndim > 1:
            grad_xp_v = grad_xp_v[:,:,np.newaxis]

        # In case this is a function over a 1D input,
        # return a numpy array rather than a float
        if np.ndim(grad_xp_m) == 0:
            grad_xp_m = np.array([grad_xp_m])
            grad_xp_v = np.array([grad_xp_v])

        return func_m, func_v, grad_xp_m, grad_xp_v
gp.py 文件源码 项目:product-taz 作者: TheAnomalieZ 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict(self, pred, full_cov=False, compute_grad=False):
        inputs = self.inputs
        values = self.values

        # Special case if there is no data yet (everything from the prior)
        if inputs is None:
            return self.predict_from_prior(pred, full_cov, compute_grad)

        if pred.shape[1] != self.num_dims:
            raise Exception("Dimensionality of inputs must match dimensionality given at init time.")

        # The primary covariances for prediction.
        cand_cross = self.noiseless_kernel.cross_cov(inputs, pred)

        chol, alpha = self._pull_from_cache_or_compute()

        # Solve the linear systems.
        # Note: if X = LL^T, cho_solve performs X\b whereas solve_triangular performs L\b
        beta = spla.solve_triangular(chol, cand_cross, lower=True)

        # Predict the marginal means at candidates.
        func_m = np.dot(cand_cross.T, alpha) + self.mean.value

        if full_cov:
            # Return the covariance matrix of the pred inputs, 
            # rather than just the individual variances at each input
            cand_cov = self.noiseless_kernel.cov(pred)
            func_v = cand_cov - np.dot(beta.T, beta)
        else:
            cand_cov = self.noiseless_kernel.diag_cov(pred)
            func_v = cand_cov - np.sum(beta**2, axis=0)

        if not compute_grad:
            return func_m, func_v

        grad_cross = self.noiseless_kernel.cross_cov_grad_data(inputs, pred)
        grad_xp_m  = np.tensordot(np.transpose(grad_cross, (1,2,0)), alpha, 1)

        # this should be faster than (and equivalent to) spla.cho_solve((chol, True),cand_cross))
        gamma = spla.solve_triangular(chol.T, beta, lower=False)

        # Using sum and multiplication and summing instead of matrix multiplication
        # because I only want the diagonals of the gradient of the covariance matrix, not the whole thing
        grad_xp_v = -2.0*np.sum(gamma[:,:,np.newaxis] * grad_cross, axis=0)

        # Not very important -- just to make sure grad_xp_v.shape = grad_xp_m.shape
        if values.ndim > 1:
            grad_xp_v = grad_xp_v[:,:,np.newaxis]

        # In case this is a function over a 1D input,
        # return a numpy array rather than a float
        if np.ndim(grad_xp_m) == 0:
            grad_xp_m = np.array([grad_xp_m])
            grad_xp_v = np.array([grad_xp_v])

        return func_m, func_v, grad_xp_m, grad_xp_v
gpc.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _posterior_mode(self, K, return_temporaries=False):
        """Mode-finding for binary Laplace GPC and fixed kernel.

        This approximates the posterior of the latent function values for given
        inputs and target observations with a Gaussian approximation and uses
        Newton's iteration to find the mode of this approximation.
        """
        # Based on Algorithm 3.1 of GPML

        # If warm_start are enabled, we reuse the last solution for the
        # posterior mode as initialization; otherwise, we initialize with 0
        if self.warm_start and hasattr(self, "f_cached") \
           and self.f_cached.shape == self.y_train_.shape:
            f = self.f_cached
        else:
            f = np.zeros_like(self.y_train_, dtype=np.float64)

        # Use Newton's iteration method to find mode of Laplace approximation
        log_marginal_likelihood = -np.inf
        for _ in range(self.max_iter_predict):
            # Line 4
            pi = 1 / (1 + np.exp(-f))
            W = pi * (1 - pi)
            # Line 5
            W_sr = np.sqrt(W)
            W_sr_K = W_sr[:, np.newaxis] * K
            B = np.eye(W.shape[0]) + W_sr_K * W_sr
            L = cholesky(B, lower=True)
            # Line 6
            b = W * f + (self.y_train_ - pi)
            # Line 7
            a = b - W_sr * cho_solve((L, True), W_sr_K.dot(b))
            # Line 8
            f = K.dot(a)

            # Line 10: Compute log marginal likelihood in loop and use as
            #          convergence criterion
            lml = -0.5 * a.T.dot(f) \
                - np.log(1 + np.exp(-(self.y_train_ * 2 - 1) * f)).sum() \
                - np.log(np.diag(L)).sum()
            # Check if we have converged (log marginal likelihood does
            # not decrease)
            # XXX: more complex convergence criterion
            if lml - log_marginal_likelihood < 1e-10:
                break
            log_marginal_likelihood = lml

        self.f_cached = f  # Remember solution for later warm-starts
        if return_temporaries:
            return log_marginal_likelihood, (pi, W_sr, L, b, a)
        else:
            return log_marginal_likelihood


问题


面经


文章

微信
公众号

扫码关注公众号