python类ifft()的实例源码

audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2 + 1] = X
        X_pad[:, fftsize // 2 + 1:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2 + 1] = X
        X_pad[:, fftsize // 2 + 1:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
fourier_pricer.py 文件源码 项目:fftoptionlib 作者: arraystream 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def carr_madan_fraction_fft_call_pricer(N, d_u, d_k, alpha, r, t, S0, q, chf_ln_st):
    rou = (d_u * d_k) / (2 * np.pi)
    beta = np.log(S0) - d_k * N / 2
    u_arr = np.arange(N) * d_u
    k_arr = beta + np.arange(N) * d_k
    delta_arr = np.zeros(N)
    delta_arr[0] = 1
    w_arr = d_u / 3 * (3 + (-1) ** (np.arange(N) + 1) - delta_arr)
    call_chf = (np.exp(-r * t) / ((alpha + 1j * u_arr) * (alpha + 1j * u_arr + 1))) * chf_ln_st(
        u_arr - (alpha + 1) * 1j,
        t, r, q=q, S0=S0)
    x_arr = np.exp(-1j * beta * u_arr) * call_chf * w_arr
    y_arr = np.zeros(2 * N) * 0j
    y_arr[:N] = np.exp(-1j * np.pi * rou * np.arange(N) ** 2) * x_arr
    z_arr = np.zeros(2 * N) * 0j
    z_arr[:N] = np.exp(1j * np.pi * rou * np.arange(N) ** 2)
    z_arr[N:] = np.exp(1j * np.pi * rou * np.arange(N - 1, -1, -1) ** 2)
    ffty = (fft(y_arr))
    fftz = (fft(z_arr))
    fftx = ffty * fftz
    fftpsi = ifft(fftx)
    fft_prices = np.exp(-1j * np.pi * (np.arange(N) ** 2) * rou) * fftpsi[:N]
    call_prices = (np.exp(-alpha * k_arr) / np.pi) * fft_prices.real
    return np.exp(k_arr), call_prices
features_online.py 文件源码 项目:pyEMG 作者: agamemnonc 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _lpc(x,order):
    """Linear predictor coefficients. Supports 1D and 2D arrays only through
    iteration."""

    x = np.asarray(x)
    if x.ndim == 1:
        m = x.size
        X = fft(x,n=nextpow2(m))  # TODO nextpower of 2
        R = np.real(ifft(np.abs(X)**2)) # Auto-correlation matrix
        R = R/m
        a = _levinson(r=R, order=order)[0]
        a = np.hstack((1., a))
    elif x.ndim == 2:
        m,n = x.shape

        X = fft(x,n=nextpow2(m), axis=0) 
        R = np.real(ifft(np.abs(X)**2, axis=0)) # Auto-correlation matrix
        R = R/m
        a = np.ones((order+1,n))
        for col in range(n):
            a[1:,col] = _levinson(r=R[:,col], order=order)[0]
    else:
        raise ValueError('Supported for 1-D or 2-D arrays only.')

    return a
compare.py 文件源码 项目:WaveletQuotes 作者: JobyKK 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def compare_fft(date, x, file_name='comparefft.jpg'):

    from scipy.fftpack import fft, ifft
    ax = []
    l = len(x)
    t = 50
    x = exp_moving_average(x, 10)

    labels = []
    ax.append(x[t:l-t])
    labels.append("??????? ???")
    ax.append((fft(x)[t:l-t]))
    labels.append("???’? ????????????")

    # print(l, len(np.fft.ifft(np.fft.fft(x)[5:l-5])[5:l-5]))
    print(len(x))
    # print(len(ifft(np.log(np.abs(fft(x)[5:l-5])))[5:l-5]))
    # ax.append((ifft(np.log(np.abs(fft(x))))[t:l-t])[:l/2 - t])
    # at.append((date[t:l-t])[::2])
    print("---")
    showPlotLabelsCompare(ax, date[t:l-t], labels, file_name)
compare.py 文件源码 项目:WaveletQuotes 作者: JobyKK 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def compare_cepstrum(date, x, file_name='comparecep.jpg'):
    # date, x = hist_data.get_historical_quotes(start_date=datetime.datetime(2000, 2, 2),
    #                                               end_date=datetime.datetime(2001, 2, 2),
    #                                           csv_path='../../data/usdgbp1990.csv')

    from scipy.fftpack import fft, ifft
    ax = []
    at = []
    l = len(x)
    t = 50
    x = exp_moving_average(x, 10)
    ax.append(x[t:l-t])
    at.append(date[t:l-t])

    # print(l, len(np.fft.ifft(np.fft.fft(x)[5:l-5])[5:l-5]))
    print(len(x))
    # print(len(ifft(np.log(np.abs(fft(x)[5:l-5])))[5:l-5]))
    ax.append((ifft(np.log(np.abs(fft(x))))[t:l-t])[:l/2 - t])
    at.append((date[t:l-t])[::2])
    print("---")
    showPlotCompareSeparate(ax, at, file_name)
_stockwell.py 文件源码 项目:decoding_challenge_cortana_2016_3rd 作者: kingjr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _st_power_itc(x, start_f, compute_itc, zero_pad, decim, W):
    """Aux function"""
    n_samp = x.shape[-1]
    n_out = (n_samp - zero_pad)
    n_out = n_out // decim + bool(n_out % decim)
    psd = np.empty((len(W), n_out))
    itc = np.empty_like(psd) if compute_itc else None
    X = fftpack.fft(x)
    XX = np.concatenate([X, X], axis=-1)
    for i_f, window in enumerate(W):
        f = start_f + i_f
        ST = fftpack.ifft(XX[:, f:f + n_samp] * window)
        TFR = ST[:, :-zero_pad:decim]
        TFR_abs = np.abs(TFR)
        if compute_itc:
            TFR /= TFR_abs
            itc[i_f] = np.abs(np.mean(TFR, axis=0))
        TFR_abs *= TFR_abs
        psd[i_f] = np.mean(TFR_abs, axis=0)
    return psd, itc
test_pdos.py 文件源码 项目:pwtools 作者: elcorto 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_pdos_1d():
    pad=lambda x: pad_zeros(x, nadd=len(x)-1)
    n=500; w=welch(n)
    # 1 second signal
    t=np.linspace(0,1,n); dt=t[1]-t[0]
    # sum of sin()s with random freq and phase shift, 10 frequencies from
    # f=0...100 Hz
    v=np.array([np.sin(2*np.pi*f*t + rand()*2*np.pi) for f in rand(10)*100]).sum(0)
    f=np.fft.fftfreq(2*n-1, dt)[:n]

    c1=mirror(ifft(abs(fft(pad(v)))**2.0)[:n].real)
    c2=correlate(v,v,'full')
    c3=mirror(acorr(v,norm=False))
    assert np.allclose(c1, c2)
    assert np.allclose(c1, c3)

    p1=(abs(fft(pad(v)))**2.0)[:n]
    p2=(abs(fft(mirror(acorr(v,norm=False)))))[:n]
    assert np.allclose(p1, p2)

    p1=(abs(fft(pad(v*w)))**2.0)[:n]
    p2=(abs(fft(mirror(acorr(v*w,norm=False)))))[:n]
    assert np.allclose(p1, p2)
pychebfun.py 文件源码 项目:fluids 作者: CalebBell 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def polyval(self, chebcoeff):
        """
        Compute the interpolation values at Chebyshev points.
        chebcoeff: Chebyshev coefficients
        """
        N = len(chebcoeff)
        if N == 1:
            return chebcoeff

        data = even_data(chebcoeff)/2
        data[0] *= 2
        data[N-1] *= 2

        fftdata = 2*(N-1)*fftpack.ifft(data, axis=0)
        complex_values = fftdata[:N]
        # convert to real if input was real
        if np.isrealobj(chebcoeff):
            values = np.real(complex_values)
        else:
            values = complex_values
        return values
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
          real=False, compute_onesided=True):
    """
    Compute ISTFT for STFT transformed X
    """
    if real:
        local_ifft = fftpack.irfft
        X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
        X_pad[:, :-1] = X
        X = X_pad
    else:
        local_ifft = fftpack.ifft
    if compute_onesided:
        X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
        X_pad[:, :fftsize // 2] = X
        X_pad[:, fftsize // 2:] = 0
        X = X_pad
    X = local_ifft(X).astype("float64")
    if step == "half":
        X = invert_halfoverlap(X)
    else:
        X = overlap_add(X, step, wsola=wsola)
    if mean_normalize:
        X -= np.mean(X)
    return X
tf_methods.py 文件源码 项目:mss_pytorch 作者: Js-Mim 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def iDFT(magX, phsX, wsz):
        """ Discrete Fourier Transformation(Synthesis) of a given spectral analysis
        via an inverse FFT implementation from scipy.
        Args:
            magX    : (2D ndarray) Magnitude Spectrum
            phsX    : (2D ndarray) Phase Spectrum
            wsz     :  (int)   Synthesis window size
        Returns:
            y       : (array) Real time domain output signal
        """

        # Get FFT Size
        hlfN = magX.size
        N = (hlfN-1)*2

        # Half of window size parameters
        hw1 = int(math.floor((wsz+1)/2))
        hw2 = int(math.floor(wsz/2))

        # Initialise output spectrum with zeros
        Y = np.zeros(N, dtype=complex)
        # Initialise output array with zeros
        y = np.zeros(wsz)

        # Compute complex spectrum(both sides) in two steps
        Y[0:hlfN] = magX * np.exp(1j*phsX)
        Y[hlfN:] = magX[-2:0:-1] * np.exp(-1j*phsX[-2:0:-1])

        # Perform the iDFT
        fftbuffer = np.real(ifft(Y))

        # Roll-back the zero-phase windowing technique
        y[:hw2] = fftbuffer[-hw2:]
        y[hw2:] = fftbuffer[:hw1]

        return y
TFMethods.py 文件源码 项目:aes_wimp 作者: Js-Mim 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def iDFT(magX, phsX, wsz):
        """ Discrete Fourier Transformation(Synthesis) of a given spectral analysis
        via an inverse FFT implementation from scipy.
        Args:
            magX    : (2D ndarray) Magnitude Spectrum
            phsX    : (2D ndarray) Phase Spectrum
            wsz     :  (int)   Synthesis window size
        Returns:
            y       : (array) Real time domain output signal
        """

        # Get FFT Size
        hlfN = magX.size;
        N = (hlfN-1)*2

        # Half of window size parameters
        hw1 = int(math.floor((wsz+1)/2))
        hw2 = int(math.floor(wsz/2))

        # Initialise synthesis buffer with zeros
        fftbuffer = np.zeros(N)
        # Initialise output spectrum with zeros
        Y = np.zeros(N, dtype = complex)
        # Initialise output array with zeros
        y = np.zeros(wsz)

        # Compute complex spectrum(both sides) in two steps
        Y[0:hlfN] = magX * np.exp(1j*phsX)
        Y[hlfN:] = magX[-2:0:-1] * np.exp(-1j*phsX[-2:0:-1])

        # Perform the iDFT
        fftbuffer = np.real(ifft(Y))

        # Roll-back the zero-phase windowing technique
        y[:hw2] = fftbuffer[-hw2:]
        y[hw2:] = fftbuffer[:hw1]

        return y
imutils.py 文件源码 项目:VLTPF 作者: avigan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _shift_fft(array, shift_value):
    Ndim  = array.ndim
    dims  = array.shape
    dtype = array.dtype.kind

    if (dtype != 'f'):
        raise ValueError('Array must be float')

    shifted = array
    if (Ndim == 1):
        Nx = dims[0]

        x_ramp = np.arange(Nx, dtype=array.dtype) - Nx//2

        tilt = (2*np.pi/Nx) * (shift_value[0]*x_ramp)

        cplx_tilt = np.cos(tilt) + 1j*np.sin(tilt)
        cplx_tilt = fft.fftshift(cplx_tilt)
        narray    = fft.fft(fft.ifft(array) * cplx_tilt)
        shifted   = narray.real
    elif (Ndim == 2):
        Nx = dims[0]
        Ny = dims[1]

        x_ramp = np.outer(np.full(Nx, 1.), np.arange(Ny, dtype=array.dtype)) - Nx//2
        y_ramp = np.outer(np.arange(Nx, dtype=array.dtype), np.full(Ny, 1.)) - Ny//2

        tilt = (2*np.pi/Nx) * (shift_value[0]*x_ramp+shift_value[1]*y_ramp)

        cplx_tilt = np.cos(tilt) + 1j*np.sin(tilt)        
        cplx_tilt = fft.fftshift(cplx_tilt)

        narray    = fft.fft2(fft.ifft2(array) * cplx_tilt)
        shifted   = narray.real
    else:
        raise ValueError('This function can shift only 1D or 2D arrays')

    return shifted
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def harvest_get_f0_candidate_from_raw_event(boundary_f0,
        fs, y_spectrum, y_length, temporal_positions, f0_floor,
        f0_ceil):
    filter_length_half = int(np.round(fs / boundary_f0 * 2))
    band_pass_filter_base = harvest_nuttall(filter_length_half * 2 + 1)
    shifter = np.cos(2 * np.pi * boundary_f0 * np.arange(-filter_length_half, filter_length_half + 1) / float(fs))
    band_pass_filter = band_pass_filter_base * shifter

    index_bias = filter_length_half
    # possible numerical issues if 32 bit
    spectrum_low_pass_filter = np.fft.fft(band_pass_filter.astype("float64"), len(y_spectrum))
    filtered_signal = np.real(np.fft.ifft(spectrum_low_pass_filter * y_spectrum))
    index_bias = filter_length_half + 1
    filtered_signal = filtered_signal[index_bias + np.arange(y_length).astype("int32")]
    negative_zero_cross = harvest_zero_crossing_engine(filtered_signal, fs)
    positive_zero_cross = harvest_zero_crossing_engine(-filtered_signal, fs)
    d_filtered_signal = filtered_signal[1:] - filtered_signal[:-1]
    peak = harvest_zero_crossing_engine(d_filtered_signal, fs)
    dip = harvest_zero_crossing_engine(-d_filtered_signal, fs)
    f0_candidate = harvest_get_f0_candidate_contour(negative_zero_cross,
            positive_zero_cross, peak, dip, temporal_positions)
    f0_candidate[f0_candidate > (boundary_f0 * 1.1)] = 0.
    f0_candidate[f0_candidate < (boundary_f0 * .9)] = 0.
    f0_candidate[f0_candidate > f0_ceil] = 0.
    f0_candidate[f0_candidate < f0_floor] = 0.
    return f0_candidate
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cheaptrick_smoothing_with_recovery(smoothed_spectrum, f0, fs, fft_size, q1):
    quefrency_axis = np.arange(fft_size) / float(fs)
    # 0 is NaN
    smoothing_lifter = np.sin(np.pi * f0 * quefrency_axis) / (np.pi * f0 * quefrency_axis)
    p = smoothing_lifter[1:int(fft_size / 2)][::-1].copy()
    smoothing_lifter[int(fft_size / 2) + 1:] = p
    smoothing_lifter[0] = 1.
    compensation_lifter = (1 - 2. * q1) + 2. * q1 * np.cos(2 * np.pi * quefrency_axis * f0)
    p = compensation_lifter[1:int(fft_size / 2)][::-1].copy()
    compensation_lifter[int(fft_size / 2) + 1:] = p
    tandem_cepstrum = np.fft.fft(np.log(smoothed_spectrum))
    tmp_spectral_envelope = np.exp(np.real(np.fft.ifft(tandem_cepstrum * smoothing_lifter * compensation_lifter)))
    spectral_envelope = tmp_spectral_envelope[:int(fft_size / 2) + 1]
    return spectral_envelope
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def harvest_get_f0_candidate_from_raw_event(boundary_f0,
        fs, y_spectrum, y_length, temporal_positions, f0_floor,
        f0_ceil):
    filter_length_half = int(np.round(fs / boundary_f0 * 2))
    band_pass_filter_base = harvest_nuttall(filter_length_half * 2 + 1)
    shifter = np.cos(2 * np.pi * boundary_f0 * np.arange(-filter_length_half, filter_length_half + 1) / float(fs))
    band_pass_filter = band_pass_filter_base * shifter

    index_bias = filter_length_half
    # possible numerical issues if 32 bit
    spectrum_low_pass_filter = np.fft.fft(band_pass_filter.astype("float64"), len(y_spectrum))
    filtered_signal = np.real(np.fft.ifft(spectrum_low_pass_filter * y_spectrum))
    index_bias = filter_length_half + 1
    filtered_signal = filtered_signal[index_bias + np.arange(y_length).astype("int32")]
    negative_zero_cross = harvest_zero_crossing_engine(filtered_signal, fs)
    positive_zero_cross = harvest_zero_crossing_engine(-filtered_signal, fs)
    d_filtered_signal = filtered_signal[1:] - filtered_signal[:-1]
    peak = harvest_zero_crossing_engine(d_filtered_signal, fs)
    dip = harvest_zero_crossing_engine(-d_filtered_signal, fs)
    f0_candidate = harvest_get_f0_candidate_contour(negative_zero_cross,
            positive_zero_cross, peak, dip, temporal_positions)
    f0_candidate[f0_candidate > (boundary_f0 * 1.1)] = 0.
    f0_candidate[f0_candidate < (boundary_f0 * .9)] = 0.
    f0_candidate[f0_candidate > f0_ceil] = 0.
    f0_candidate[f0_candidate < f0_floor] = 0.
    return f0_candidate
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cheaptrick_smoothing_with_recovery(smoothed_spectrum, f0, fs, fft_size, q1):
    quefrency_axis = np.arange(fft_size) / float(fs)
    # 0 is NaN
    smoothing_lifter = np.sin(np.pi * f0 * quefrency_axis) / (np.pi * f0 * quefrency_axis)
    p = smoothing_lifter[1:int(fft_size / 2)][::-1].copy()
    smoothing_lifter[int(fft_size / 2) + 1:] = p
    smoothing_lifter[0] = 1.
    compensation_lifter = (1 - 2. * q1) + 2. * q1 * np.cos(2 * np.pi * quefrency_axis * f0)
    p = compensation_lifter[1:int(fft_size / 2)][::-1].copy()
    compensation_lifter[int(fft_size / 2) + 1:] = p
    tandem_cepstrum = np.fft.fft(np.log(smoothed_spectrum))
    tmp_spectral_envelope = np.exp(np.real(np.fft.ifft(tandem_cepstrum * smoothing_lifter * compensation_lifter)))
    spectral_envelope = tmp_spectral_envelope[:int(fft_size / 2) + 1]
    return spectral_envelope
TFMethods.py 文件源码 项目:ASP 作者: TUIlmenauAMS 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def iDFT(magX, phsX, wsz):
        """ Discrete Fourier Transformation(Synthesis) of a given spectral analysis
        via an inverse FFT implementation from scipy.
        Args:
            magX    : (2D ndarray) Magnitude Spectrum
            phsX    : (2D ndarray) Phase Spectrum
            wsz     :  (int)   Synthesis window size
        Returns:
            y       : (array) Real time domain output signal
        """

        # Get FFT Size
        hlfN = magX.size;
        N = (hlfN-1)*2

        # Half of window size parameters
        hw1 = int(math.floor((wsz+1)/2))
        hw2 = int(math.floor(wsz/2))

        # Initialise synthesis buffer with zeros
        fftbuffer = np.zeros(N)
        # Initialise output spectrum with zeros
        Y = np.zeros(N, dtype = complex)
        # Initialise output array with zeros
        y = np.zeros(wsz)

        # Compute complex spectrum(both sides) in two steps
        Y[0:hlfN] = magX * np.exp(1j*phsX)
        Y[hlfN:] = magX[-2:0:-1] * np.exp(-1j*phsX[-2:0:-1])

        # Perform the iDFT
        fftbuffer = np.real(ifft(Y))

        # Roll-back the zero-phase windowing technique
        y[:hw2] = fftbuffer[-hw2:]
        y[hw2:] = fftbuffer[:hw1]

        return y


问题


面经


文章

微信
公众号

扫码关注公众号