python类fft()的实例源码

kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
kdllib.py 文件源码 项目:crikey 作者: kastnerkyle 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
         compute_onesided=True):
    """
    Compute STFT for 1D real valued input X
    """
    if real:
        local_fft = fftpack.rfft
        cut = -1
    else:
        local_fft = fftpack.fft
        cut = None
    if compute_onesided:
        cut = fftsize // 2
    if mean_normalize:
        X -= X.mean()
    if step == "half":
        X = halfoverlap(X, fftsize)
    else:
        X = overlap(X, fftsize, step)
    size = fftsize
    win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
    X = X * win[None]
    X = local_fft(X)[:, :cut]
    return X
randtest.py 文件源码 项目:prbg 作者: Lakate 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def spectraltest(binin):
    '''The focus of this test is the peak heights in the discrete Fast Fourier Transform. The purpose of this test is to detect periodic features (i.e., repetitive patterns that are near each other) in the tested sequence that would indicate a deviation from the assumption of randomness. '''

    n = len(binin)
    ss = [int(el) for el in binin]
    sc = map(sumi, ss)
    ft = sff.fft(sc)
    af = abs(ft)[1:n/2+1:]
    t = np.sqrt(np.log(1/0.05)*n)
    n0 = 0.95*n/2
    n1 = len(np.where(af<t)[0])
    d = (n1 - n0)/np.sqrt(n*0.95*0.05/4)
    pval = spc.erfc(abs(d)/np.sqrt(2))
    return pval > 0.01
tf_methods.py 文件源码 项目:mss_pytorch 作者: Js-Mim 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def DFT(x, w, N):
        """ Discrete Fourier Transformation(Analysis) of a given real input signal
        via an FFT implementation from scipy. Single channel is being supported.
        Args:
            x       : (array) Real time domain input signal
            w       : (array) Desired windowing function
            N       : (int)   FFT size
        Returns:
            magX    : (2D ndarray) Magnitude Spectrum
            phsX    : (2D ndarray) Phase Spectrum
        """

        # Half spectrum size containing DC component
        hlfN = (N/2)+1

        # Half window size. Two parameters to perform zero-phase windowing technique
        hw1 = int(math.floor((w.size+1)/2))
        hw2 = int(math.floor(w.size/2))

        # Window the input signal
        winx = x*w

        # Initialize FFT buffer with zeros and perform zero-phase windowing
        fftbuffer = np.zeros(N)
        fftbuffer[:hw1] = winx[hw2:]
        fftbuffer[-hw2:] = winx[:hw2]

        # Compute DFT via scipy's FFT implementation
        X = fft(fftbuffer)

        # Acquire magnitude and phase spectrum
        magX = (np.abs(X[:hlfN]))
        phsX = (np.angle(X[:hlfN]))

        return magX, phsX
test_utils.py 文件源码 项目:brainiak 作者: brainiak 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_phase_randomize():
    from brainiak.utils.utils import phase_randomize
    import numpy as np
    from scipy.fftpack import fft
    import math
    from scipy.stats import pearsonr

    # Generate auto-correlated signals
    nv = 2
    T = 100
    ns = 3
    D = np.zeros((nv, T, ns))
    for v in range(nv):
        for s in range(ns):
            D[v, :, s] = np.sin(np.linspace(0, math.pi * 5 * (v + 1), T)) + \
                         np.sin(np.linspace(0, math.pi * 6 * (s + 1), T))

    freq = fft(D, axis=1)
    D_pr = phase_randomize(D)
    freq_pr = fft(D_pr, axis=1)
    p_corr = pearsonr(np.angle(freq).flatten(), np.angle(freq_pr).flatten())[0]

    assert np.isclose(abs(freq), abs(freq_pr)).all(), \
        "Amplitude spectrum not preserved under phase randomization"

    assert abs(p_corr) < 0.03, \
        "Phases still correlated after randomization"
tasks.py 文件源码 项目:django-celery-rabbitmq-example 作者: Giangblackk 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fft_random(n):
    for i in range(n):
        x = random.normal(0, 0.1, 2000)
        y = fft(x)
        if(i%30 == 0):
            process_percent = int(100 * float(i)/float(n))
            current_task.update_state(state='PROGRESS',
                meta={'process_percent': process_percent})
    return random.random()
tasks.py 文件源码 项目:django-celery-rabbitmq-example 作者: Giangblackk 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test(tid, n):
    for i in range(n):
        x = random.normal(0, 0.1, 2000)
        y = fft(x)
    result = dict()
    result['x'] = random.random()
    result['y'] = random.randint(100)
    return result


# @task_success.connect(sender='celeryapp.tasks.fft_random')
TFMethods.py 文件源码 项目:aes_wimp 作者: Js-Mim 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def DFT(x, w, N):
        """ Discrete Fourier Transformation(Analysis) of a given real input signal
        via an FFT implementation from scipy. Single channel is being supported.
        Args:
            x       : (array) Real time domain input signal
            w       : (array) Desired windowing function
            N       : (int)   FFT size
        Returns:
            magX    : (2D ndarray) Magnitude Spectrum
            phsX    : (2D ndarray) Phase Spectrum
        """

        # Half spectrum size containing DC component
        hlfN = (N/2)+1

        # Half window size. Two parameters to perform zero-phase windowing technique
        hw1 = int(math.floor((w.size+1)/2))
        hw2 = int(math.floor(w.size/2))

        # Window the input signal
        winx = x*w

        # Initialize FFT buffer with zeros and perform zero-phase windowing
        fftbuffer = np.zeros(N)
        fftbuffer[:hw1] = winx[hw2:]
        fftbuffer[-hw2:] = winx[:hw2]

        # Compute DFT via scipy's FFT implementation
        X = fft(fftbuffer)

        # Acquire magnitude and phase spectrum
        magX = (np.abs(X[:hlfN]))
        phsX = (np.angle(X[:hlfN]))

        return magX, phsX
main.py 文件源码 项目:crypto-forcast 作者: 7yl4r 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plotFFT(df):

    # Number of samplepoints
    N = len(df)
    # sample spacing
    T = BINSIZE*60.0
    x = np.linspace(0.0, N*T, N)
    y = df.values #np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)
    yf = fftpack.fft(y)
    xf = np.linspace(0.0, 1.0/(2.0*T), N/2)

    fig, ax = plt.subplots()
    ax.plot(xf, 2.0/N * np.abs(yf[:N//2]))
    plt.savefig(FIG_DIR+'fft.png', bbox_inches='tight')
spectrum_analyzer.py 文件源码 项目:pyrpl 作者: lneuhaus 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def frequencies(self):
        """
        :return: frequency array
        """
        if self.baseband:
            return np.fft.rfftfreq(self.data_length*self.PADDING_FACTOR,
                                   self.sampling_time)
        else:
            return self.center + scipy.fftpack.fftshift( scipy.fftpack.fftfreq(
                                  self.data_length*self.PADDING_FACTOR,
                                  self.sampling_time)) #[self.useful_index()]
imutils.py 文件源码 项目:VLTPF 作者: avigan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _shift_fft(array, shift_value):
    Ndim  = array.ndim
    dims  = array.shape
    dtype = array.dtype.kind

    if (dtype != 'f'):
        raise ValueError('Array must be float')

    shifted = array
    if (Ndim == 1):
        Nx = dims[0]

        x_ramp = np.arange(Nx, dtype=array.dtype) - Nx//2

        tilt = (2*np.pi/Nx) * (shift_value[0]*x_ramp)

        cplx_tilt = np.cos(tilt) + 1j*np.sin(tilt)
        cplx_tilt = fft.fftshift(cplx_tilt)
        narray    = fft.fft(fft.ifft(array) * cplx_tilt)
        shifted   = narray.real
    elif (Ndim == 2):
        Nx = dims[0]
        Ny = dims[1]

        x_ramp = np.outer(np.full(Nx, 1.), np.arange(Ny, dtype=array.dtype)) - Nx//2
        y_ramp = np.outer(np.arange(Nx, dtype=array.dtype), np.full(Ny, 1.)) - Ny//2

        tilt = (2*np.pi/Nx) * (shift_value[0]*x_ramp+shift_value[1]*y_ramp)

        cplx_tilt = np.cos(tilt) + 1j*np.sin(tilt)        
        cplx_tilt = fft.fftshift(cplx_tilt)

        narray    = fft.fft2(fft.ifft2(array) * cplx_tilt)
        shifted   = narray.real
    else:
        raise ValueError('This function can shift only 1D or 2D arrays')

    return shifted
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def harvest_get_f0_candidate_from_raw_event(boundary_f0,
        fs, y_spectrum, y_length, temporal_positions, f0_floor,
        f0_ceil):
    filter_length_half = int(np.round(fs / boundary_f0 * 2))
    band_pass_filter_base = harvest_nuttall(filter_length_half * 2 + 1)
    shifter = np.cos(2 * np.pi * boundary_f0 * np.arange(-filter_length_half, filter_length_half + 1) / float(fs))
    band_pass_filter = band_pass_filter_base * shifter

    index_bias = filter_length_half
    # possible numerical issues if 32 bit
    spectrum_low_pass_filter = np.fft.fft(band_pass_filter.astype("float64"), len(y_spectrum))
    filtered_signal = np.real(np.fft.ifft(spectrum_low_pass_filter * y_spectrum))
    index_bias = filter_length_half + 1
    filtered_signal = filtered_signal[index_bias + np.arange(y_length).astype("int32")]
    negative_zero_cross = harvest_zero_crossing_engine(filtered_signal, fs)
    positive_zero_cross = harvest_zero_crossing_engine(-filtered_signal, fs)
    d_filtered_signal = filtered_signal[1:] - filtered_signal[:-1]
    peak = harvest_zero_crossing_engine(d_filtered_signal, fs)
    dip = harvest_zero_crossing_engine(-d_filtered_signal, fs)
    f0_candidate = harvest_get_f0_candidate_contour(negative_zero_cross,
            positive_zero_cross, peak, dip, temporal_positions)
    f0_candidate[f0_candidate > (boundary_f0 * 1.1)] = 0.
    f0_candidate[f0_candidate < (boundary_f0 * .9)] = 0.
    f0_candidate[f0_candidate > f0_ceil] = 0.
    f0_candidate[f0_candidate < f0_floor] = 0.
    return f0_candidate
audio_tools.py 文件源码 项目:tools 作者: kastnerkyle 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def harvest(x, fs):
    f0_floor = 71
    f0_ceil = 800
    target_fs = 8000
    channels_in_octave = 40.
    basic_temporal_positions, temporal_positions = _world_get_temporal_positions(len(x), fs)
    adjusted_f0_floor = f0_floor * 0.9
    adjusted_f0_ceil = f0_ceil * 1.1
    boundary_f0_list = np.arange(1, np.ceil(np.log2(adjusted_f0_ceil / adjusted_f0_floor) * channels_in_octave) + 1) / float(channels_in_octave)
    boundary_f0_list = adjusted_f0_floor * 2.0 ** boundary_f0_list
    y, actual_fs = harvest_get_downsampled_signal(x, fs, target_fs)
    fft_size = 2. ** np.ceil(np.log2(len(y) + np.round(fs / f0_floor * 4) + 1))
    y_spectrum = np.fft.fft(y, int(fft_size))
    raw_f0_candidates = harvest_get_raw_f0_candidates(
        len(basic_temporal_positions),
        boundary_f0_list, len(y), basic_temporal_positions, actual_fs,
        y_spectrum, f0_floor, f0_ceil)

    f0_candidates, number_of_candidates = harvest_detect_official_f0_candidates(raw_f0_candidates)
    f0_candidates = harvest_overlap_f0_candidates(f0_candidates, number_of_candidates)
    f0_candidates, f0_scores = harvest_refine_candidates(y, actual_fs,
            basic_temporal_positions, f0_candidates, f0_floor, f0_ceil)

    f0_candidates, f0_scores = harvest_remove_unreliable_candidates(f0_candidates, f0_scores)

    connected_f0, vuv = harvest_fix_f0_contour(f0_candidates, f0_scores)
    smoothed_f0 = harvest_smooth_f0_contour(connected_f0)
    idx = np.minimum(len(smoothed_f0) - 1, np.round(temporal_positions * 1000)).astype("int32")
    f0 = smoothed_f0[idx]
    vuv = vuv[idx]
    f0_candidates = f0_candidates
    return temporal_positions, f0, vuv, f0_candidates


问题


面经


文章

微信
公众号

扫码关注公众号