python类uniform()的实例源码

greyData.py 文件源码 项目:PaintsPytorch 作者: orashi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.9, 1.) * area
            aspect_ratio = random.uniform(7. / 8, 8. / 7)

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert (img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))
test_sources.py 文件源码 项目:datapipelines-python 作者: meraki-analytics 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_get_many():
    source = IntFloatDataSource()

    values = [random.randint(-VALUES_MAX, VALUES_MAX) for _ in range(VALUES_COUNT)]

    for value in values:
        query = {VALUE_KEY: value, COUNT_KEY: VALUES_COUNT}
        result = source.get_many(int, query)

        assert type(result) is GENERATOR_CLASS
        for res in result:
            assert type(res) is int
            assert res == value

    values = [random.uniform(-VALUES_MAX, VALUES_MAX) for _ in range(VALUES_COUNT)]

    for value in values:
        query = {VALUE_KEY: value, COUNT_KEY: VALUES_COUNT}
        result = source.get_many(float, query)

        assert type(result) is GENERATOR_CLASS
        for res in result:
            assert type(res) is float
            assert res == value
hellozmq.py 文件源码 项目:zanph 作者: zanph 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def serviceA(context=None):
    #reuse context if it exists, otherwise make a new one
    context = context or zmq.Context.instance()
    service = context.socket(zmq.DEALER)

    #identify worker
    service.setsockopt(zmq.IDENTITY,b'A')
    service.connect("tcp://localhost:5560")
    while True:
        message = service.recv()
        with myLock:
            print "Service A got:"
            print message
        if message == "Service A":
            #do some work
            time.sleep(random.uniform(0,0.5))
            service.send(b"Service A did your laundry")
        elif message == "END":
            break
        else:
            with myLock:
                print "the server has the wrong identities!"
            break
dispycos_client1.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # arguments must correspond to arguments for computaiton; multiple arguments
    # (as in this case) can be given as tuples
    args = [(i, random.uniform(2, 5)) for i in range(njobs)]
    results = yield computation.run_results(compute, args)
    # Tasks may not be executed in the order of given list of args, but
    # results would be in the same order of given list of args
    for result in results:
        print('    result for %d from %s: %s' % result)

    # wait for all jobs to be done and close computation
    yield computation.close()
dispycos_httpd2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    # schedule computation with the scheduler
    if (yield computation.schedule()):
        raise Exception('schedule failed')

    i = 0
    while True:
        cmd = yield task.receive()
        if cmd is None:
            break
        i += 1
        c = C(i)
        c.n = random.uniform(20, 50)
        # unlike in dispycos_client*.py, here 'run_async' is used to run as
        # many tasks as given on servers (i.e., possibly more than one
        # task on a server at any time).
        rtask = yield computation.run_async(compute, c, task)
        if isinstance(rtask, pycos.Task):
            print('  %s: rtask %s created' % (i, rtask))
        else:
            print('  %s: rtask failed: %s' % (i, rtask))

    # unlike in dispycos_httpd1.py, here 'await_async' is not used, so any
    # running async tasks are just terminated.
    yield computation.close()
dispycos_client9_server.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 51 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # execute 10 jobs (tasks) and get their results. Note that number of jobs
    # created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    algorithms = ['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']
    args = [(algorithms[i % len(algorithms)], random.uniform(5, 10)) for i in range(15)]
    results = yield computation.run_results(compute, args)
    for i, result in enumerate(results):
        if isinstance(result, tuple) and len(result) == 3:
            print('    %ssum for %s: %s' % (result[1], result[0], result[2]))
        else:
            print('  rtask failed for %s: %s' % (args[i][0], str(result)))

    yield computation.close()
dispycos_client9_node.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # execute 10 jobs (tasks) and get their results. Note that number of jobs
    # created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    yield task.sleep(2)
    algorithms = ['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']
    args = [(algorithms[i % len(algorithms)], random.uniform(1, 3)) for i in range(15)]
    results = yield computation.run_results(compute, args)
    for i, result in enumerate(results):
        if isinstance(result, tuple) and len(result) == 3:
            print('   %ssum for %s: %s' % (result[1], result[0], result[2]))
        else:
            print('  rtask failed for %s: %s' % (args[i][0], str(result)))

    yield computation.close()
dispycos_client2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # run jobs
    for i in range(njobs):
        # computation is supposed to be CPU bound so 'run' is used so at most
        # one computations runs at a server at any time; for mostly idle
        # computations, use 'run_async' to run more than one computation at a
        # server at the same time.
        rtask = yield computation.run(compute, random.uniform(5, 10))
        if isinstance(rtask, pycos.Task):
            print('  job %s processed by %s' % (i, rtask.location))
        else:
            print('rtask %s failed: %s' % (i, rtask))

    # wait for all jobs to be done and close computation
    yield computation.close()
dispycos_client4.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def client_proc(job_id, data_file, rtask, task=None):
    # send input file to rtask.location; this will be saved to dispycos process's
    # working directory
    if (yield pycos.Pycos().send_file(rtask.location, data_file, timeout=10)) < 0:
        print('Could not send input data to %s' % rtask.location)
        # terminate remote task
        rtask.send(None)
        raise StopIteration(-1)
    # send info about input
    obj = C(job_id, data_file, random.uniform(5, 8), task)
    if (yield rtask.deliver(obj)) != 1:
        print('Could not send input to %s' % rtask.location)
        raise StopIteration(-1)
    # rtask sends result to this task as message
    result = yield task.receive()
    if not result.result_file:
        print('Processing %s failed' % obj.i)
        raise StopIteration(-1)
    # rtask saves results file at this client, which is saved in pycos's
    # dest_path, not current working directory!
    result_file = os.path.join(pycos.Pycos().dest_path, result.result_file)
    # move file to cwd
    target = os.path.join(os.getcwd(), os.path.basename(result_file))
    os.rename(result_file, target)
    print('    job %s output is in %s' % (obj.i, target))
rti_monitor_client.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def rti_test(task=None):
    # if server is on remote network, automatic discovery won't work,
    # so add it explicitly
    # yield scheduler.peer('192.168.21.5')

    # get reference to RTI at server
    rti1 = yield pycos.RTI.locate('rti_1')
    print('RTI is at %s' % rti1.location)

    # 5 (remote) tasks are created with rti1
    n = 5
    # set monitor (monitor_proc task) for tasks created for this RTI
    yield rti1.monitor(pycos.Task(monitor_proc, n))

    for i in range(n):
        rtask = yield rti1('test%s' % i, b=i)
        pycos.logger.debug('RTI %s created' % rtask)
        # If necessary, each rtask can also be set (different) 'monitor'
        rtask.send('msg:%s' % i)
        yield task.sleep(random.uniform(0, 1))
dispycos_ssh_ec2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # pair EC2 node with this client with:
    yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347))
    # if multiple nodes are used, 'broadcast' option can be used to pair with
    # all nodes with just one statement as:
    # yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347), broadcast=True)

    # execute n jobs (tasks) and get their results. Note that number of
    # jobs created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    args = [random.uniform(3, 10) for _ in range(njobs)]
    results = yield computation.run_results(compute, args)
    for result in results:
        print('result: %s' % result)

    yield computation.close()
dispycos_client1.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # arguments must correspond to arguments for computaiton; multiple arguments
    # (as in this case) can be given as tuples
    args = [(i, random.uniform(2, 5)) for i in range(njobs)]
    results = yield computation.run_results(compute, args)
    # Tasks may not be executed in the order of given list of args, but
    # results would be in the same order of given list of args
    for result in results:
        print('    result for %d from %s: %s' % result)

    # wait for all jobs to be done and close computation
    yield computation.close()
dispycos_httpd2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    # schedule computation with the scheduler
    if (yield computation.schedule()):
        raise Exception('schedule failed')

    i = 0
    while True:
        cmd = yield task.receive()
        if cmd is None:
            break
        i += 1
        c = C(i)
        c.n = random.uniform(20, 50)
        # unlike in dispycos_client*.py, here 'run_async' is used to run as
        # many tasks as given on servers (i.e., possibly more than one
        # task on a server at any time).
        rtask = yield computation.run_async(compute, c, task)
        if isinstance(rtask, pycos.Task):
            print('  %s: rtask %s created' % (i, rtask))
        else:
            print('  %s: rtask failed: %s' % (i, rtask))

    # unlike in dispycos_httpd1.py, here 'await_async' is not used, so any
    # running async tasks are just terminated.
    yield computation.close()
channel.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def client_proc(task=None):
    # create channel
    channel = pycos.Channel('sum_prod')
    # create tasks to compute sum and product of numbers sent
    sum_task = pycos.Task(seqsum)
    prod_task = pycos.Task(seqprod)
    # subscribe tasks to channel so they receive messages
    yield channel.subscribe(sum_task)
    yield channel.subscribe(prod_task)
    # send 4 numbers to channel
    for _ in range(4):
        r = random.uniform(0.5, 3)
        channel.send(r)
        print('sent %f' % r)
    # send None to indicate end of data
    channel.send(None)
    yield channel.unsubscribe(sum_task)
    yield channel.unsubscribe(prod_task)
dispycos_client9_node.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # execute 10 jobs (tasks) and get their results. Note that number of jobs
    # created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    yield task.sleep(2)
    algorithms = ['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']
    args = [(algorithms[i % len(algorithms)], random.uniform(1, 3)) for i in range(15)]
    results = yield computation.run_results(compute, args)
    for i, result in enumerate(results):
        if isinstance(result, tuple) and len(result) == 3:
            print('   %ssum for %s: %s' % (result[1], result[0], result[2]))
        else:
            print('  rtask failed for %s: %s' % (args[i][0], str(result)))

    yield computation.close()
dispycos_client2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # run jobs
    for i in range(njobs):
        # computation is supposed to be CPU bound so 'run' is used so at most
        # one computations runs at a server at any time; for mostly idle
        # computations, use 'run_async' to run more than one computation at a
        # server at the same time.
        rtask = yield computation.run(compute, random.uniform(5, 10))
        if isinstance(rtask, pycos.Task):
            print('  job %s processed by %s' % (i, rtask.location))
        else:
            print('rtask %s failed: %s' % (i, rtask))

    # wait for all jobs to be done and close computation
    yield computation.close()
rti_monitor_client.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rti_test(task=None):
    # if server is on remote network, automatic discovery won't work,
    # so add it explicitly
    # yield scheduler.peer('192.168.21.5')

    # get reference to RTI at server
    rti1 = yield pycos.RTI.locate('rti_1')
    print('RTI is at %s' % rti1.location)

    # 5 (remote) tasks are created with rti1
    n = 5
    # set monitor (monitor_proc task) for tasks created for this RTI
    yield rti1.monitor(pycos.Task(monitor_proc, n))

    for i in range(n):
        rtask = yield rti1('test%s' % i, b=i)
        pycos.logger.debug('RTI %s created' % rtask)
        # If necessary, each rtask can also be set (different) 'monitor'
        rtask.send('msg:%s' % i)
        yield task.sleep(random.uniform(0, 1))
dispycos_ssh_ec2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # pair EC2 node with this client with:
    yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347))
    # if multiple nodes are used, 'broadcast' option can be used to pair with
    # all nodes with just one statement as:
    # yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347), broadcast=True)

    # execute n jobs (tasks) and get their results. Note that number of
    # jobs created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    args = [random.uniform(3, 10) for _ in range(njobs)]
    results = yield computation.run_results(compute, args)
    for result in results:
        print('result: %s' % result)

    yield computation.close()
dispycos_client1.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # arguments must correspond to arguments for computaiton; multiple arguments
    # (as in this case) can be given as tuples
    args = [(i, random.uniform(2, 5)) for i in range(njobs)]
    results = yield computation.run_results(compute, args)
    # Tasks may not be executed in the order of given list of args, but
    # results would be in the same order of given list of args
    for result in results:
        print('    result for %d from %s: %s' % result)

    # wait for all jobs to be done and close computation
    yield computation.close()
dispycos_httpd2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    # schedule computation with the scheduler
    if (yield computation.schedule()):
        raise Exception('schedule failed')

    i = 0
    while True:
        cmd = yield task.receive()
        if cmd is None:
            break
        i += 1
        c = C(i)
        c.n = random.uniform(20, 50)
        # unlike in dispycos_client*.py, here 'run_async' is used to run as
        # many tasks as given on servers (i.e., possibly more than one
        # task on a server at any time).
        rtask = yield computation.run_async(compute, c, task)
        if isinstance(rtask, pycos.Task):
            print('  %s: rtask %s created' % (i, rtask))
        else:
            print('  %s: rtask failed: %s' % (i, rtask))

    # unlike in dispycos_httpd1.py, here 'await_async' is not used, so any
    # running async tasks are just terminated.
    yield computation.close()
dispycos_client9_server.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # execute 10 jobs (tasks) and get their results. Note that number of jobs
    # created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    algorithms = ['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']
    args = [(algorithms[i % len(algorithms)], random.uniform(5, 10)) for i in range(15)]
    results = yield computation.run_results(compute, args)
    for i, result in enumerate(results):
        if isinstance(result, tuple) and len(result) == 3:
            print('    %ssum for %s: %s' % (result[1], result[0], result[2]))
        else:
            print('  rtask failed for %s: %s' % (args[i][0], str(result)))

    yield computation.close()
dispycos_client9_node.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def client_proc(computation, task=None):
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # execute 10 jobs (tasks) and get their results. Note that number of jobs
    # created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    yield task.sleep(2)
    algorithms = ['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']
    args = [(algorithms[i % len(algorithms)], random.uniform(1, 3)) for i in range(15)]
    results = yield computation.run_results(compute, args)
    for i, result in enumerate(results):
        if isinstance(result, tuple) and len(result) == 3:
            print('   %ssum for %s: %s' % (result[1], result[0], result[2]))
        else:
            print('  rtask failed for %s: %s' % (args[i][0], str(result)))

    yield computation.close()
dispycos_client2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # run jobs
    for i in range(njobs):
        # computation is supposed to be CPU bound so 'run' is used so at most
        # one computations runs at a server at any time; for mostly idle
        # computations, use 'run_async' to run more than one computation at a
        # server at the same time.
        rtask = yield computation.run(compute, random.uniform(5, 10))
        if isinstance(rtask, pycos.Task):
            print('  job %s processed by %s' % (i, rtask.location))
        else:
            print('rtask %s failed: %s' % (i, rtask))

    # wait for all jobs to be done and close computation
    yield computation.close()
dispycos_client4.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def client_proc(job_id, data_file, rtask, task=None):
    # send input file to rtask.location; this will be saved to dispycos process's
    # working directory
    if (yield pycos.Pycos().send_file(rtask.location, data_file, timeout=10)) < 0:
        print('Could not send input data to %s' % rtask.location)
        # terminate remote task
        rtask.send(None)
        raise StopIteration(-1)
    # send info about input
    obj = C(job_id, data_file, random.uniform(5, 8), task)
    if (yield rtask.deliver(obj)) != 1:
        print('Could not send input to %s' % rtask.location)
        raise StopIteration(-1)
    # rtask sends result to this task as message
    result = yield task.receive()
    if not result.result_file:
        print('Processing %s failed' % obj.i)
        raise StopIteration(-1)
    # rtask saves results file at this client, which is saved in pycos's
    # dest_path, not current working directory!
    result_file = os.path.join(pycos.Pycos().dest_path, result.result_file)
    # move file to cwd
    target = os.path.join(os.getcwd(), os.path.basename(result_file))
    os.rename(result_file, target)
    print('    job %s output is in %s' % (obj.i, target))
rti_monitor_client.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def rti_test(task=None):
    # if server is on remote network, automatic discovery won't work,
    # so add it explicitly
    # yield scheduler.peer('192.168.21.5')

    # get reference to RTI at server
    rti1 = yield pycos.RTI.locate('rti_1')
    print('RTI is at %s' % rti1.location)

    # 5 (remote) tasks are created with rti1
    n = 5
    # set monitor (monitor_proc task) for tasks created for this RTI
    yield rti1.monitor(pycos.Task(monitor_proc, n))

    for i in range(n):
        rtask = yield rti1('test%s' % i, b=i)
        pycos.logger.debug('RTI %s created' % rtask)
        # If necessary, each rtask can also be set (different) 'monitor'
        rtask.send('msg:%s' % i)
        yield task.sleep(random.uniform(0, 1))
dispycos_ssh_ec2.py 文件源码 项目:pycos 作者: pgiri 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def client_proc(computation, njobs, task=None):
    # schedule computation with the scheduler; scheduler accepts one computation
    # at a time, so if scheduler is shared, the computation is queued until it
    # is done with already scheduled computations
    if (yield computation.schedule()):
        raise Exception('Could not schedule computation')

    # pair EC2 node with this client with:
    yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347))
    # if multiple nodes are used, 'broadcast' option can be used to pair with
    # all nodes with just one statement as:
    # yield pycos.Pycos().peer(pycos.Location('54.204.242.185', 51347), broadcast=True)

    # execute n jobs (tasks) and get their results. Note that number of
    # jobs created can be more than number of server processes available; the
    # scheduler will use as many processes as necessary/available, running one
    # job at a server process
    args = [random.uniform(3, 10) for _ in range(njobs)]
    results = yield computation.run_results(compute, args)
    for result in results:
        print('result: %s' % result)

    yield computation.close()
01_adding_task.py 文件源码 项目:skiprnn-2017-telecombcn 作者: imatge-upc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def generate_example(seq_length, min_val, max_val):
    """
    Creates a list of (a,b) tuples where a is random[min_val,max_val] and b is 1 in only
    two tuples, 0 for the rest. The ground truth is the addition of a values for tuples with b=1.

    :param seq_length: length of the sequence to be generated
    :param min_val: minimum value for a
    :param max_val: maximum value for a

    :return x: list of (a,b) tuples
    :return y: ground truth
    """
    # Select b values: one in first X% of the sequence, the other in the second Y%
    b1 = random.randint(0, int(seq_length * FIRST_MARKER / 100.) - 1)
    b2 = random.randint(int(seq_length * SECOND_MARKER / 100.), seq_length - 1)

    b = [0.] * seq_length
    b[b1] = 1.
    b[b2] = 1.

    # Generate list of tuples
    x = [(random.uniform(min_val, max_val), marker) for marker in b]
    y = x[b1][0] + x[b2][0]

    return x, y
metaballs.py 文件源码 项目:blender-scripting 作者: njanakiev 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def createMetaball(origin=(0, 0, 0), n=30, r0=4, r1=2.5):
    metaball = bpy.data.metaballs.new('MetaBall')
    obj = bpy.data.objects.new('MetaBallObject', metaball)
    bpy.context.scene.objects.link(obj)

    metaball.resolution = 0.2
    metaball.render_resolution = 0.05

    for i in range(n):
        location = Vector(origin) + Vector(random.uniform(-r0, r0) for i in range(3))

        element = metaball.elements.new()
        element.co = location
        element.radius = r1

    return metaball
2.py 文件源码 项目:Bahubali---DDOS-Toolkit 作者: navanchauhan 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _send_http_post(self, pause=10):
        global stop_now

        self.socks.send("POST / HTTP/1.1\r\n"
                        "Host: %s\r\n"
                        "User-Agent: %s\r\n"
                        "Connection: keep-alive\r\n"
                        "Keep-Alive: 900\r\n"
                        "Content-Length: 10000\r\n"
                        "Content-Type: application/x-www-form-urlencoded\r\n\r\n" % 
                        (self.host, random.choice(useragents)))

        for i in range(0, 9999):
            if stop_now:
                self.running = False
                break
            p = random.choice(string.letters+string.digits)
            print term.BOL+term.UP+term.CLEAR_EOL+"Posting: %s" % p+term.NORMAL
            self.socks.send(p)
            time.sleep(random.uniform(0.1, 3))

        self.socks.close()
rpc_api.py 文件源码 项目:pogom-linux 作者: PokeHunterProject 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, auth_provider, device_info=None):

        self.log = logging.getLogger(__name__)

        self._auth_provider = auth_provider

        # mystical unknown6 - resolved by PokemonGoDev
        self._signal_agglom_gen = False
        self._signature_lib = None

        if RpcApi.START_TIME == 0:
            RpcApi.START_TIME = get_time(ms=True)

        if RpcApi.RPC_ID == 0:
            RpcApi.RPC_ID = int(random.random() * 10 ** 18)
            self.log.debug('Generated new random RPC Request id: %s', RpcApi.RPC_ID)

        # data fields for unknown6
        self.session_hash = os.urandom(32)
        self.token2 = random.randint(1,59)
        self.course = random.uniform(0, 360)

        self.device_info = device_info


问题


面经


文章

微信
公众号

扫码关注公众号