python类shuffle()的实例源码

CardsAgainstHumanity.py 文件源码 项目:CorpBot.py 作者: corpnewt 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def drawCard(self, game):
        # Draws a random unused card and shuffles the deck if needed
        totalDiscard = len(game['Discard'])
        for member in game['Members']:
            totalDiscard += len(member['Hand'])
        if totalDiscard >= len(self.deck['whiteCards']):
            # Tell everyone the cards were shuffled
            for member in game['Members']:
                if member['IsBot']:
                    continue
                user = member['User']
                await self.bot.send_message(user, 'Shuffling white cards...')
            # Shuffle the cards
            self.shuffle(game)
        while True:
            # Random grab a unique card
            index = random.randint(0, len(self.deck['whiteCards'])-1)
            if not index in game['Discard']:
                game['Discard'].append(index)
                text = self.deck['whiteCards'][index]
                text = self.cleanJson(text)
                card = { 'Index': index, 'Text': text }
                return card
match.py 文件源码 项目:privcount 作者: privcount 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_random_load_nonentry():
    '''
    Return a random item that probably isn't in match_func_result['load'].
    '''
    match_type = sys.argv[1]
    if match_type == 'ipasn':
        # Yes, we could do IPv6 here. But the type of the list doesn't matter:
        # a random IPv4 might not be in an IPv4 list, and it won't be in an
        # IPv6 list
        random_32_bit = random.randint(0, 2**32 - 1)
        ip = ipaddress.ip_address(random_32_bit)
        return ip
    else:
        char_list = list(get_random_load_entry())
        random.shuffle(char_list)
        return "".join(char_list)

# try to make sure that other processes don't warp the results too much
leagues.py 文件源码 项目:studsup 作者: ebmscruff 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def schedule_matches(self):
        mySchedule = []
        # for each home team
        for home in range(len(self.clubs)):
            for away in range(len(self.clubs)):
                if home == away:
                    continue
                # schedule will be in order at first 
                match = Match(self.clubs[home], self.clubs[away])
                mySchedule.append(match)
                # TODO: This will need majorly improved.
                # Issue created on github
                away += 1
        # shuffle that schedule 
        random.shuffle(mySchedule)
        # set current schedule to the new one
        self.schedule = mySchedule
random_start.py 文件源码 项目:machine-learning 作者: zzw0929 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def  hill_climbling_first_choice(status):
    '''??????????????????????????????????????

    ??????????
    '''
    global chess_status_count
    pos = [(x, y) for x in range(8) for y in range(8)]
    random.shuffle(pos)
    for col, row in pos:
        if status[col] == row:
            continue
        chess_status_count += 1
        status_copy = list(status)
        status_copy[col] = row
        if get_num_of_conglict(status_copy) < get_num_of_conglict(status):
            status[col] = row
            return status
    return status
first_choice.py 文件源码 项目:machine-learning 作者: zzw0929 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def  hill_climbling_first_choice(status):
    '''??????????????????????????????????????

    ??????????
    '''
    global chess_status_count

    pos = [(x, y) for x in range(8) for y in range(8)]
    random.shuffle(pos)
    for col, row in pos:
        if status[col] == row:
            continue
        chess_status_count += 1
        status_copy = list(status)
        status_copy[col] = row
        if get_num_of_conglict(status_copy) < get_num_of_conglict(status):
            status[col] = row
            return status
    return status
do_test.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def reproduce(n = None, dataset = 'RCT', rand_shuffle = None, num_it = 3, split = None):
    """
    read save_ss files
    reproduce evaluation
    """

    filename = 'save_ss_' + dataset + ' ' + str(n) + '_' + str(rand_shuffle)
    f = open(filename, 'r')
    (tc_dic, mv_dic, vs_diag_dic, vs_full_dic) = pickle.load(f)

    start.main(dataset)
    lc = crowd_model.labels_collection(start.turk_data_id, start.rel)
    gold_dic = lc.get_true_ss()
    random.shuffle(start.turk_data_id, lambda : rand_shuffle)
    random.shuffle(start.rel, lambda : rand_shuffle)
    test_data = (start.turk_data_id[split:], start.rel[split:])

    print n    
    print "tc ", eval_cm(tc_dic, gold_dic, True, test_data)
    print "mv ", eval_cm(mv_dic, gold_dic, True, test_data)
    print "vs Full_Cov = False ", eval_cm(vs_diag_dic, gold_dic, True, test_data)
    print "vs Full_Cov = True " , eval_cm(vs_full_dic, gold_dic, True, test_data)
    f.close()
do_test.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setup(dataset = 'proton-beam', n = 1000, ngold = 0, rand_shuffle = None):
    start.main(dataset)

    if rand_shuffle != None:
        random.shuffle(start.turk_data_id, lambda : rand_shuffle)
        random.shuffle(start.rel, lambda : rand_shuffle)

    lc_gold = crowd_model.labels_collection(start.turk_data_id, start.rel)
    gold_dic = lc_gold.get_true_ss()

    lc1 = crowd_model.labels_collection(start.turk_data_id[:n], start.rel[:ngold] + (n-ngold)*[None])
    tc = crowd_model.tc_model(lc1)

    lc2 = crowd_model.labels_collection(start.turk_data_id[:n], start.rel[:ngold] + (n-ngold)*[None])
    mv = crowd_model.mv_model(lc2)

    lc3 = crowd_model.labels_collection(start.turk_data_id[:n], start.rel[:ngold] + (n-ngold)*[None])
    vs_full = crowd_model.vss_model(lc3, full_cov = True)

    lc4 = crowd_model.labels_collection(start.turk_data_id[:n], start.rel[:ngold] + (n-ngold)*[None])
    vs_diag = crowd_model.vss_model(lc3, full_cov = False)

    return (gold_dic, mv, tc, vs_full, vs_diag)
start.py 文件源码 项目:code-uai16 作者: thanhan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_balance_d():
    n = len(rel)
    a = np.arange(n)
    np.random.shuffle(a)

    n0 = 0; n1 = 0; indices = []
    for i in a:
        x = rel[i]
        if n0 < n1 and x == 1: continue
        if n1 < n0 and x == 0: continue
        indices.append(i)
        if x == 0: n0 += 1
        if x == 1: n1 += 1

    global bal_mat, bal_rel, bal_turk_data, bal_turk_data_uncer, bal_turk_data_id
    bal_mat = mat[indices]
    bal_rel = [rel[i] for i in indices]
    #bal_turk_data = [turk_data[i] for i in indices]
    #bal_turk_data_uncer = [turk_data_uncer[i] for i in indices]
    bal_turk_data_id = [turk_data_id[i] for i in indices]
optim.py 文件源码 项目:SoCFoundationFlow 作者: mattaw 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def read_wafdir():
    try:
        os.listdir('waflib')
    except:
        raise ImportError('please provide a waflib directory in the current folder')

    d = 'waflib'
    lst = [d + os.sep + x for x in os.listdir(d) if x.endswith('.py')]
    e = d + os.sep + 'Tools'
    lst.extend([e + os.sep + x for x in os.listdir(e) if x.endswith('.py')])
    f = d + os.sep + 'extras'
    lst.extend([f + os.sep + x for x in os.listdir(f) if x.endswith('.py')])

    random.shuffle(lst)
    #lst.sort()
    return lst
optim.py 文件源码 项目:SoCFoundationFlow 作者: mattaw 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def read_wafdir():
    try:
        os.listdir('waflib')
    except:
        raise ImportError('please provide a waflib directory in the current folder')

    d = 'waflib'
    lst = [d + os.sep + x for x in os.listdir(d) if x.endswith('.py')]
    e = d + os.sep + 'Tools'
    lst.extend([e + os.sep + x for x in os.listdir(e) if x.endswith('.py')])
    f = d + os.sep + 'extras'
    lst.extend([f + os.sep + x for x in os.listdir(f) if x.endswith('.py')])

    random.shuffle(lst)
    #lst.sort()
    return lst
optim.py 文件源码 项目:SoCFoundationFlow 作者: mattaw 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def read_wafdir():
    try:
        os.listdir('waflib')
    except:
        raise ImportError('please provide a waflib directory in the current folder')

    d = 'waflib'
    lst = [d + os.sep + x for x in os.listdir(d) if x.endswith('.py')]
    e = d + os.sep + 'Tools'
    lst.extend([e + os.sep + x for x in os.listdir(e) if x.endswith('.py')])
    f = d + os.sep + 'extras'
    lst.extend([f + os.sep + x for x in os.listdir(f) if x.endswith('.py')])

    random.shuffle(lst)
    #lst.sort()
    return lst
tagger_data.py 文件源码 项目:deep_srl 作者: luheng 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_training_data(self, include_last_batch=False):
    """ Get shuffled training samples. Called at the beginning of each epoch.
    """
    # TODO: Speed up: Use variable size batches (different max length).  
    train_ids = range(len(self.train_sents))
    random.shuffle(train_ids)

    if not include_last_batch:
      num_batches = len(train_ids) // self.batch_size
      train_ids = train_ids[:num_batches * self.batch_size]

    num_samples = len(self.train_sents)
    tensors = [self.train_tensors[t] for t in train_ids]
    batched_tensors = [tensors[i: min(i+self.batch_size, num_samples)]
               for i in xrange(0, num_samples, self.batch_size)]
    results = [zip(*t) for t in batched_tensors]

    print("Extracted {} samples and {} batches.".format(num_samples, len(batched_tensors)))
    return results
Question.py 文件源码 项目:PokeMath 作者: rdp1070 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def makeQ(self):
        nums = [10, 50]  # creating array of percentges
        num1 = random.choice(nums)  # choosing random percentage
        nums2 = [10, 20, 40, 100]
        print
        num2 = random.choice(nums2)
        q1 = ("What is {0} percent of {1}?").format(num1, num2)  # question string
        i = 0
        options = []
        while (i<4):
            options.append(random.randint(0,100))
            i+=1


        a1 = int((num1 / 100.0) * num2)  # num1 is the percentage, which should mutltiply by num2
        options.append(a1)
        random.shuffle(options)
        print("Choose the correct answer: {0}").format(options)
        return q1, a1, options
Question.py 文件源码 项目:PokeMath 作者: rdp1070 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def makeQ(self):
        nums = [10, 20, 40, 80]  # creating array of percentges
        num1 = random.choice(nums)  # choosing random percentage
        nums2 = [10, 20, 40, 100]
        print
        num2 = random.choice(nums2)
        q1 = ("What is {0} percent of {1} ").format(num1, num2)  # question string

        i = 0
        options = []
        while (i<4):
                options.append(random.randint(0,100))
                i+=1

        a1 = int((num1 / 100.0) * num2)  # num1 is the percentage, which should mutltiply by num2

        options.append(a1)
        random.shuffle(options)
        print("Choose the correct answer: {0}").format(options)
        return q1, a1, options

#Subclass of Monster class for geometry-related monsters
Question.py 文件源码 项目:PokeMath 作者: rdp1070 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def makeQ(self):
        nums1 = [1,2,5,10] #creating array of numbers to multiply
        num1 = random.choice(nums1) #choosing random number to multiply
        nums2 = [1,2,3,4,5,6,7,8,9,10]
        num2  = random.choice(nums2)
        q1 = ("What is {0} multiplied by {1}? ").format(num1, num2) #question string
        a1 = int( num1 * num2 ) #What is num1 times num2

        i = 0
        options = []
        while (i<4):
            options.append(random.randint(1, 100))
            i+=1
        options.append(a1)
        random.shuffle(options)
        print("Choose the correct answer: {0}").format(options)
        return q1, a1, options
Question.py 文件源码 项目:PokeMath 作者: rdp1070 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def makeQ(self):
        nums1 = [2,3,4,5,6,7,8,9,10] #creating array of numbers to multiply
        num1 = random.choice(nums1) #choosing random number to multiply
        nums2 = [2,3,4,5,6,7,8,9,10]
        num2  = random.choice(nums2)
        q1 = ("What is {0} multiplied by {1}? ").format(num1, num2) #question string
        a1 = int( num1 * num2 ) #What is num1 times num2

        i = 0
        options = []
        while (i<4):
            options.append(random.randint(1,100))
            i+=1
        options.append(a1)
        random.shuffle(options)
        print("Choose the correct answer: {0}").format(options)
        return q1, a1, options
classifier.py 文件源码 项目:word-classification 作者: vinsis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def createData():
    spwords = [unidecode(a.lower()) for a in set(nltk.corpus.cess_esp.words()) if len(a)>3]
    enwords = [a.lower() for a in set(nltk.corpus.brown.words()) if len(a)>3]
    jpwords = [unidecode(a) for a in jeita.words() if (len(unidecode(a)) and unidecode(a)[0].islower())]
    jpwords = [a for a in set(jpwords) if len(a)>3]
    # minLen = min(len(enwords), len(spwords), len(jpwords))

    featuresets = \
        [(createTupleDict(w,numChars),'English') for w in enwords] + \
        [(createTupleDict(w,numChars),'Spanish') for w in spwords] + \
        [(createTupleDict(w,numChars),'Japanese') for w in jpwords]

    random.shuffle(featuresets)

    l=int(len(featuresets)*0.8)

    training_set = featuresets[:l]
    testing_set = featuresets[l:]
    return (training_set, testing_set)
bidirectional.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _split_train_tst(self):
        """
        divide the data into training and testing data
        Create the X_trn, X_tst, for both forward and backward, and Y_trn and Y_tst
        Note that only the reviews are changed, and not the summary.

        :return: None
        """
        num_samples = self.Y.shape[0]
        mapper_file = self.checkpointer.get_mapper_file_location()
        if not self.checkpointer.is_mapper_checkpointed():
            print 'No mapper checkpoint found. Fresh loading in progress ...'
            # Now shuffle the data
            sample_id = range(num_samples)
            random.shuffle(sample_id)
            print 'Dumping the mapper shuffle for reuse.'
            Pickle.dump(sample_id, open(mapper_file, 'wb'))
            print 'Dump complete. Moving Forward...'
        else:
            print 'Mapper Checkpoint found... Reading from mapper dump'
            sample_id = Pickle.load(open(mapper_file, 'rb'))
            print 'Mapping unpickling complete.. Moving forward...'

        self.X_fwd = self.X_fwd[sample_id]
        self.X_bwd = self.X_bwd[sample_id]
        self.Y = self.Y[sample_id]
        # Now divide the data into test ans train set
        test_fraction = 0.01
        self.test_size = int(test_fraction * num_samples)
        self.train_size = num_samples - self.test_size
        # Forward review
        self.X_trn_fwd = self.X_fwd[0:self.train_size]
        self.X_tst_fwd = self.X_fwd[self.train_size:num_samples]
        # Backward review
        self.X_trn_bwd = self.X_bwd[0:self.train_size]
        self.X_tst_bwd = self.X_bwd[self.train_size:num_samples]
        # Summary
        self.Y_trn = self.Y[0:self.train_size]
        self.Y_tst = self.Y[self.train_size:num_samples]
stacked_simple.py 文件源码 项目:deep-summarization 作者: harpribot 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _split_train_tst(self):
        """
        divide the data into training and testing data
        Create the X_trn, X_tst, and Y_trn and Y_tst
        Note that only the reviews are changed, and not the summary.

        :return: None
        """
        num_samples = self.Y.shape[0]
        mapper_file = self.checkpointer.get_mapper_file_location()
        if not self.checkpointer.is_mapper_checkpointed():
            print 'No mapper checkpoint found. Fresh loading in progress ...'
            # Now shuffle the data
            sample_id = range(num_samples)
            random.shuffle(sample_id)
            print 'Dumping the mapper shuffle for reuse.'
            Pickle.dump(sample_id, open(mapper_file, 'wb'))
            print 'Dump complete. Moving Forward...'
        else:
            print 'Mapper Checkpoint found... Reading from mapper dump'
            sample_id = Pickle.load(open(mapper_file, 'rb'))
            print 'Mapping unpickling complete.. Moving forward...'

        self.X = self.X[sample_id]
        self.Y = self.Y[sample_id]
        # Now divide the data into test ans train set
        test_fraction = 0.01
        self.test_size = int(test_fraction * num_samples)
        self.train_size = num_samples - self.test_size
        # review
        self.X_trn = self.X[0:self.train_size]
        self.X_tst = self.X[self.train_size:num_samples]
        # Summary
        self.Y_trn = self.Y[0:self.train_size]
        self.Y_tst = self.Y[self.train_size:num_samples]


问题


面经


文章

微信
公众号

扫码关注公众号