def plot_objfn(pos_term_info, log_Z_info, color, zoom=False, label=None):
assert np.all(pos_term_info.counts == log_Z_info.counts)
exact = not hasattr(log_Z_info, 'lower')
mean = pos_term_info.values - log_Z_info.mean
if not exact:
lower = pos_term_info.values - log_Z_info.upper
upper = pos_term_info.values - log_Z_info.lower
pylab.semilogx(pos_term_info.counts, mean, color=color, label=label)
if not exact:
pylab.errorbar(pos_term_info.counts, (lower+upper)/2., yerr=(upper-lower)/2., fmt='', ls='None', ecolor=color)
if zoom:
pylab.ylim(mean.max() - 50., mean.max() + 5.)
python类errorbar()的实例源码
def plot_results(self, results, xloc, color, ls, label):
iter_counts = sorted(set([it for it, av in results.keys() if av == self.average]))
sorted_results = [results[it, self.average] for it in iter_counts]
avg = np.array([r.train_logprob() for r in sorted_results])
if hasattr(r, 'train_logprob_interval'):
lower = np.array([r.train_logprob_interval()[0] for r in sorted_results])
upper = np.array([r.train_logprob_interval()[1] for r in sorted_results])
if self.logscale:
plot_cmd = pylab.semilogx
else:
plot_cmd = pylab.plot
xloc = xloc[:len(avg)]
lw = 2.
if label not in self.labels:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw, label=label)
else:
plot_cmd(xloc, avg, color=color, ls=ls, lw=lw)
self.labels.add(label)
pylab.xticks(fontsize='xx-large')
pylab.yticks(fontsize='xx-large')
try:
pylab.errorbar(xloc, (lower+upper)/2., yerr=(upper-lower)/2., fmt='', ls='None', ecolor=color)
except:
pass
def drawDensityProfile(self, catalog=None):
rmax = 24. # arcmin
bins = numpy.arange(0, rmax + 1.e-10, 2.)
centers = 0.5 * (bins[1:] + bins[0:-1])
area = numpy.pi * (bins[1:]**2 - bins[0:-1]**2)
r_peak = self.kernel.extension
stars = self.get_stars()
angsep = ugali.utils.projector.angsep(self.ra, self.dec,
stars.ra, stars.dec)
angsep_arcmin = angsep * 60 # arcmin
cut_iso = self.isochrone_selection(stars)
h = numpy.histogram(angsep_arcmin[(angsep_arcmin < rmax) & cut_iso], bins=bins)[0]
h_out = numpy.histogram(angsep_arcmin[(angsep_arcmin < rmax) & (~cut_iso)], bins=bins)[0]
gals = self.get_galaxies()
if len(gals):
angsep_gal = ugali.utils.projector.angsep(self.ra, self.dec,
gals.ra, gals.dec)
angsep_gal_arcmin = angsep_gal * 60 # arcmin
cut_iso_gal = self.isochrone_selection(gals)
h_gal = np.histogram(angsep_gal_arcmin[(angsep_gal_arcmin < rmax) & cut_iso_gal], bins=bins)[0]
h_gal_out = np.histogram(angsep_gal_arcmin[(angsep_gal_arcmin < rmax) & (~cut_iso_gal)], bins=bins)[0]
plt.plot(centers, h/area, c='red', label='Filtered Stars')
plt.errorbar(centers, h/area, yerr=(numpy.sqrt(h) / area), ecolor='red', c='red')
plt.scatter(centers, h/area, edgecolor='none', c='red', zorder=22)
plt.plot(centers, h_out/area, c='gray', label='Unfiltered Stars')
plt.errorbar(centers, h_out/area, yerr=(numpy.sqrt(h_out) / area), ecolor='gray', c='gray')
plt.scatter(centers, h_out/area, edgecolor='none', c='gray', zorder=21)
if len(gals):
plt.plot(centers, h_gal/area, c='black', label='Filtered Galaxies')
plt.errorbar(centers, h_gal/area, yerr=(numpy.sqrt(h_gal) / area), ecolor='black', c='black')
plt.scatter(centers, h_gal/area, edgecolor='none', c='black', zorder=20)
plt.xlabel('Angular Separation (arcmin)')
plt.ylabel(r'Density (arcmin$^{-2}$)')
plt.xlim(0., rmax)
ymax = pylab.ylim()[1]
#pylab.ylim(0, ymax)
pylab.ylim(0, 12)
pylab.legend(loc='upper right', frameon=False, fontsize=10)
def drawKernelHist(ax, kernel):
ext = kernel.extension
theta = kernel.theta
lon, lat = kernel.lon, kernel.lat
xmin,xmax = -5*ext,5*ext
ymin,ymax = -5*ext,5*ext,
x = np.linspace(xmin,xmax,100)+kernel.lon
y = np.linspace(ymin,ymax,100)+kernel.lat
xx,yy = np.meshgrid(x,y)
zz = kernel.pdf(xx,yy)
im = ax.imshow(zz)#,extent=[xmin,xmax,ymin,ymax])
hax,vax = draw_slices(ax,zz,color='k')
mc_lon,mc_lat = kernel.sample(1e5)
hist,xedges,yedges = np.histogram2d(mc_lon,mc_lat,bins=[len(x),len(y)],
range=[[x.min(),x.max()],[y.min(),y.max()]])
xbins,ybins = np.arange(hist.shape[0])+0.5,np.arange(hist.shape[1])+0.5
vzz = zz.sum(axis=0)
hzz = zz.sum(axis=1)
vmc = hist.sum(axis=0)
hmc = hist.sum(axis=1)
vscale = vzz.max()/vmc.max()
hscale = hzz.max()/hmc.max()
kwargs = dict(marker='.',ls='',color='r')
hax.errorbar(hmc*hscale, ybins, xerr=np.sqrt(hmc)*hscale,**kwargs)
vax.errorbar(xbins, vmc*vscale,yerr=np.sqrt(vmc)*vscale,**kwargs)
ax.set_ylim(0,len(y))
ax.set_xlim(0,len(x))
#try: ax.cax.colorbar(im)
#except: pylab.colorbar(im)
#a0 = np.array([0.,0.])
#a1 =kernel.a*np.array([np.sin(np.deg2rad(theta)),-np.cos(np.deg2rad(theta))])
#ax.plot([a0[0],a1[0]],[a0[1],a1[1]],'-ob')
#
#b0 = np.array([0.,0.])
#b1 =kernel.b*np.array([np.cos(np.radians(theta)),np.sin(np.radians(theta))])
#ax.plot([b0[0],b1[0]],[b0[1],b1[1]],'-or')
label_kwargs = dict(xy=(0.05,0.05),xycoords='axes fraction', xytext=(0, 0),
textcoords='offset points',ha='left', va='bottom',size=10,
bbox={'boxstyle':"round",'fc':'1'}, zorder=10)
norm = zz.sum() * (x[1]-x[0])**2
ax.annotate("Sum = %.2f"%norm,**label_kwargs)
#ax.set_xlabel(r'$\Delta$ LON (deg)')
#ax.set_ylabel(r'$\Delta$ LAT (deg)')
###################################################