def display_wav(filename):
input_data = read(filename)
audio_in = input_data[1]
samples = len(audio_in)
fig = pylab.figure();
print samples/44100.0," seconds"
k = 0
plot_data_out = []
for i in xrange(samples):
plot_data_out.append(audio_in[k]/32768.0)
k = k+1
pdata = numpy.array(plot_data_out, dtype=numpy.float)
pylab.plot(pdata)
pylab.grid(True)
pylab.ion()
pylab.show()
python类grid()的实例源码
def plot(self, fontsize=16):
"""Create the barplot from the stats file"""
from sequana.lazy import pylab
from sequana.lazy import pandas as pd
pylab.clf()
df = pd.DataFrame(self._parse_data()['rules'])
ts = df.ix['mean-runtime']
total_time = df.ix['mean-runtime'].sum()
#ts['total'] = self._parse_data()['total_runtime'] / float(self.N)
ts['total'] = total_time
ts.sort_values(inplace=True)
ts.plot.barh(fontsize=fontsize)
pylab.grid(True)
pylab.xlabel("Seconds (s)", fontsize=fontsize)
try:
pylab.tight_layout()
except:
pass
def plot_rectified(self):
import pylab
pylab.title('rectified')
pylab.imshow(self.rectified)
for line in self.vlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
p0 = self.inv_transform(p0)
p1 = self.inv_transform(p1)
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
def plot_original(self):
import pylab
pylab.title('original')
pylab.imshow(self.data)
for line in self.lines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)
for line in self.vlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')
for line in self.hlines:
p0, p1 = line
pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')
pylab.axis('image');
pylab.grid(c='yellow', lw=1)
pylab.plt.yticks(np.arange(0, self.l, 100.0));
pylab.xlim(0, self.w)
pylab.ylim(self.l, 0)
def plotPopScore(population, fitness=False):
""" Plot the population score distribution
Example:
>>> Interaction.plotPopScore(population)
:param population: population object (:class:`GPopulation.GPopulation`)
:param fitness: if True, the fitness score will be used, otherwise, the raw.
:rtype: None
"""
score_list = getPopScores(population, fitness)
pylab.plot(score_list, 'o')
pylab.title("Plot of population score distribution")
pylab.xlabel('Individual')
pylab.ylabel('Score')
pylab.grid(True)
pylab.show()
# -----------------------------------------------------------------
def plotHistPopScore(population, fitness=False):
""" Population score distribution histogram
Example:
>>> Interaction.plotHistPopScore(population)
:param population: population object (:class:`GPopulation.GPopulation`)
:param fitness: if True, the fitness score will be used, otherwise, the raw.
:rtype: None
"""
score_list = getPopScores(population, fitness)
n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
pylab.xlabel('Score')
pylab.ylabel('Frequency')
pylab.grid(True)
pylab.title("Plot of population score distribution")
pylab.show()
# -----------------------------------------------------------------
def plotPopScore(population, fitness=False):
""" Plot the population score distribution
Example:
>>> Interaction.plotPopScore(population)
:param population: population object (:class:`GPopulation.GPopulation`)
:param fitness: if True, the fitness score will be used, otherwise, the raw.
:rtype: None
"""
score_list = getPopScores(population, fitness)
pylab.plot(score_list, 'o')
pylab.title("Plot of population score distribution")
pylab.xlabel('Individual')
pylab.ylabel('Score')
pylab.grid(True)
pylab.show()
# -----------------------------------------------------------------
def plotHistPopScore(population, fitness=False):
""" Population score distribution histogram
Example:
>>> Interaction.plotHistPopScore(population)
:param population: population object (:class:`GPopulation.GPopulation`)
:param fitness: if True, the fitness score will be used, otherwise, the raw.
:rtype: None
"""
score_list = getPopScores(population, fitness)
n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
pylab.xlabel('Score')
pylab.ylabel('Frequency')
pylab.grid(True)
pylab.title("Plot of population score distribution")
pylab.show()
# -----------------------------------------------------------------
def plot_word_frequencies(freq, user):
samples = [item for item, _ in freq.most_common(50)]
freqs = np.array([float(freq[sample]) for sample in samples])
freqs /= np.max(freqs)
ylabel = "Normalized word count"
pylab.grid(True, color="silver")
kwargs = dict()
kwargs["linewidth"] = 2
kwargs["label"] = user
pylab.plot(freqs, **kwargs)
pylab.xticks(range(len(samples)), [nltk.compat.text_type(s) for s in samples], rotation=90)
pylab.xlabel("Samples")
pylab.ylabel(ylabel)
pylab.gca().set_yscale('log', basey=2)
4(improved-7).py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 34
收藏 0
点赞 0
评论 0
def show_results(self):
pl.plot(self.t1, self.n_A1, 'b--', label='A1: Time Step = 0.05')
pl.plot(self.t1, self.n_B1, 'b', label='B1: Time Step = 0.05')
pl.plot(self.t2, self.n_A2, 'g--', label='A2: Time Step = 0.1')
pl.plot(self.t2, self.n_B2, 'g', label='B2: Time Step = 0.1')
pl.plot(self.t1, self.n_A1_true, 'r--', label='True A1: Time Step = 0.05')
pl.plot(self.t1, self.n_B1_true, 'r', label='True B1: Time Step = 0.05')
pl.plot(self.t2, self.n_A2_true, 'c--', label='True A2: Time Step = 0.1')
pl.plot(self.t2, self.n_B2_true, 'c', label='True B2: Time Step = 0.1')
pl.title('Double Decay Probelm-Approximation Compared with True in Defferent Time Steps')
pl.xlim(0.0, 0.1)
pl.ylim(0.0, 100.0)
pl.xlabel('time ($s$)')
pl.ylabel('Number of Nuclei')
pl.legend(loc='best', shadow=True, fontsize='small')
pl.grid(True)
pl.savefig("computational_physics homework 4(improved-7).png")
6 code.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def show_simple(self):
font = {'family': 'serif',
'color': 'k',
'weight': 'normal',
'size': 16,
}
pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
pl.plot(self.x, self.y, label ='$\\alpha = %.0f \degree$'%self.alpha)
pl.xlabel('x $m$')
pl.ylabel('y $m$')
pl.xlim(0, 400)
pl.ylim(-100, 200)
pl.grid()
pl.legend(loc = 'upper right', shadow = True, fontsize = 'medium')
pl.text(5, -80, 'trojectories varing with angles of wind', fontdict = font)
pl.show()
5 code 1.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def show_results(self):
font = {'family': 'serif',
'color': 'k',
'weight': 'normal',
'size': 14,
}
pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
pl.title('The Trajectory of a Cannon Shell', fontdict = font)
pl.xlabel('x (k$m$)')
pl.ylabel('y ($km$)')
pl.xlim(0, 60)
pl.ylim(0, 20)
pl.grid(True)
pl.legend(loc='upper right', shadow=True, fontsize='large')
pl.text(41, 16, 'Only with air drag', fontdict = font)
pl.show()
5 code 2.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def show_results(self):
font = {'family': 'serif',
'color': 'k',
'weight': 'normal',
'size': 12,
}
pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
pl.title('The Trajectory of a Cannon Shell', fontdict = font)
pl.xlabel('x (k$m$)')
pl.ylabel('y ($km$)')
pl.xlim(0, 60)
pl.ylim(0, 20)
pl.grid(True)
pl.legend(loc='upper right', shadow=True, fontsize='large')
pl.text(34, 16, ' With both air drag and \n reduced air density-isothermal', fontdict = font)
pl.show()
5 code 4.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def show_results(self):
font = {'family': 'serif',
'color': 'k',
'weight': 'normal',
'size': 12,
}
pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
pl.title('The Trajectory of a Cannon Shell', fontdict = font)
pl.xlabel('x (k$m$)')
pl.ylabel('y ($km$)')
pl.xlim(0, 60)
pl.ylim(0, 20)
pl.grid(True)
pl.legend(loc='upper right', shadow=True, fontsize='large')
pl.text(34.5, 16, ' With air drag and the \n dependence of g on altitude', fontdict = font)
pl.show()
5 code 3.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def show_results(self):
font = {'family': 'serif',
'color': 'k',
'weight': 'normal',
'size': 12,
}
pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
pl.title('The Trajectory of a Cannon Shell', fontdict = font)
pl.xlabel('x (k$m$)')
pl.ylabel('y ($km$)')
pl.xlim(0, 60)
pl.ylim(0, 20)
pl.grid(True)
pl.legend(loc='upper right', shadow=True, fontsize='large')
pl.text(34.5, 16, ' With both air drag and \n reduced air density-adiabatic', fontdict = font)
pl.show()
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
pl.figure
pl.subplot(311)
pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
pl.plot(closes)
DrawLine(pl, sign, closes)
pl.subplot(312)
pl.grid()
if dvs != None:
pl.plot(dvs)
if isinstance(curve, np.ndarray):
DrawZZ(pl, curve, 'r')
if leag != None:
pl.plot(leag, 'r')
if lad != None:
pl.plot(lad, 'b')
#pl.plot(stock.GuiYiHua(closes[:i])[60:])
pl.subplot(313)
pl.plot(sign)
pl.plot(pandl)
pl.show()
pl.close()
def DrawDvsAndZZ(pl, dvs, zz, closes=None):
"""dvs?zz??????; dvs : ????closes, """
dvs = np.array(dvs)
pl.figure
if closes == None:
pl.plot(dvs)
pl.plot(zz[:,0], zz[:,1], 'r')
else:
pl.subplot(211)
pl.plot(closes)
pl.grid()
pl.subplot(212)
pl.grid()
pl.plot(dvs)
pl.plot(zz[:,0], zz[:,1], 'r')
pl.show()
pl.close()
def elltest(scale=0.8,off=0.2):
#generate an example, random, non-self-intersecting polygon.
#This is done by first generating
#it in polar coordinates and than translating it
#to cartesian.
Theta1,R1=linspace(0,2*pi,30),rand(30)*scale+off
X1,Y1=R1*cos(Theta1),R1*sin(Theta1)
X1=append(X1,X1[0])
Y1=append(Y1,Y1[0])
p.plot(X1,Y1,".-",ms=10)
a2,b2,ecc2,alpha2=ellfit(X1,Y1,showFig=False)
Xe,Ye=ellipse(b2,a2,-alpha2,X1.mean(),Y1.mean(),Nb=40)
p.plot(Xe,Ye,"r.-")
p.grid(True)
p.show()
pass
def plot(self,title='',include_baseline=False,equal_aspect=True):
""" Method that generates a plot of the ROC curve
Parameters:
title: Title of the chart
include_baseline: Add the baseline plot line if it's True
equal_aspect: Aspects to be equal for all plot
"""
pylab.clf()
pylab.plot([x[0] for x in self.derived_points], [y[1] for y in self.derived_points], self.linestyle)
if include_baseline:
pylab.plot([0.0,1.0], [0.0,1.0],'k-.')
pylab.ylim((0,1))
pylab.xlim((0,1))
pylab.xticks(pylab.arange(0,1.1,.1))
pylab.yticks(pylab.arange(0,1.1,.1))
pylab.grid(True)
if equal_aspect:
cax = pylab.gca()
cax.set_aspect('equal')
pylab.xlabel('1 - Specificity')
pylab.ylabel('Sensitivity')
pylab.title(title)
pylab.show()
def plotAccuracyGraph(X, Y, Xlabel='Variable', Ylabel='Accuracy', graphTitle="Test Accuracy Graph", filename="graph.pdf"):
""" Plots and saves accuracy graphs """
try:
timestamp = int(time.time())
fig = P.figure(figsize=(8,5))
# Set the graph's title
P.title(graphTitle, fontname='monospace')
# Set the axes labels
P.xlabel(Xlabel, fontsize=12, fontname='monospace')
P.ylabel(Ylabel, fontsize=12, fontname='monospace')
# Add horizontal and vertical lines to the graph
P.grid(color='DarkGray', linestyle='--', linewidth=0.1, axis='both')
# Add the data to the graph
P.plot(X, Y, 'r-*', linewidth=1.0)
# Save figure
prettyPrint("Saving figure to ./%s" % filename)#(graphTitle.replace(" ","_"), timestamp))
P.tight_layout()
fig.savefig("./%s" % filename)#(graphTitle.replace(" ", "_"), timestamp))
except Exception as e:
prettyPrint("Error encountered in \"plotAccuracyGraph\": %s" % e, "error")
return False
return True
def plot_sum_data(sum_data):
pdata = numpy.array(sum_data, dtype=numpy.int16)
pylab.figure()
pylab.plot(pdata)
pylab.grid(True)
pylab.show()
def PowerCurve(self):
"""plot power curve."""
plt.plot(self.speeds, self.powers, linewidth=2.0)
plt.title('Power Curve for ' + self.name)
plt.grid(True)
plt.xlabel('wind speed (m/s)')
plt.ylabel('generation (kW)')
plt.show(block=True)
def initUI(self):
self.grid = QtGui.QGridLayout()
self.checkbox = []
i = 0
bold = QtGui.QFont()
bold.setBold(True)
for plot in range(len(self.plot_order)):
if self.plot_order[plot] in self.spacers:
label = QtGui.QLabel(self.spacers[self.plot_order[plot]])
label.setFont(bold)
self.grid.addWidget(label, i, 0)
i += 1
self.checkbox.append(QtGui.QCheckBox(self.hdrs[self.plot_order[plot]], self))
if self.plots[self.plot_order[plot]]:
self.checkbox[plot].setCheckState(QtCore.Qt.Checked)
self.grid.addWidget(self.checkbox[-1], i, 0)
i += 1
self.grid.connect(self.checkbox[0], QtCore.SIGNAL('stateChanged(int)'), self.check_all)
show = QtGui.QPushButton('Proceed', self)
show.clicked.connect(self.showClicked)
self.grid.addWidget(show, i, 0)
frame = QtGui.QFrame()
frame.setLayout(self.grid)
self.scroll = QtGui.QScrollArea()
self.scroll.setWidgetResizable(True)
self.scroll.setWidget(frame)
self.layout = QtGui.QVBoxLayout(self)
self.layout.addWidget(self.scroll)
commnt = QtGui.QLabel('Nearest weather files:\n' + self.comment)
self.layout.addWidget(commnt)
self.setWindowTitle('SIREN - Weather dialog for ' + str(self.base_year))
QtGui.QShortcut(QtGui.QKeySequence('q'), self, self.quitClicked)
self.show_them = False
self.show()
def initUI(self):
self.chosen = []
self.grid = QtGui.QGridLayout()
self.checkbox = []
self.checkbox.append(QtGui.QCheckBox('Check / Uncheck all', self))
self.grid.addWidget(self.checkbox[-1], 0, 0)
i = 0
c = 0
icons = Icons()
for stn in sorted(self.stations, key=lambda station: station.name):
if stn.technology[:6] == 'Fossil' and not self.actual:
continue
if stn.technology == 'Rooftop PV' and stn.scenario == 'Existing' and not self.gross_load:
continue
self.checkbox.append(QtGui.QCheckBox(stn.name, self))
icon = icons.getIcon(stn.technology)
if icon != '':
self.checkbox[-1].setIcon(QtGui.QIcon(icon))
i += 1
self.grid.addWidget(self.checkbox[-1], i, c)
if i > 25:
i = 0
c += 1
self.grid.connect(self.checkbox[0], QtCore.SIGNAL('stateChanged(int)'), self.check_all)
show = QtGui.QPushButton('Choose', self)
self.grid.addWidget(show, i + 1, c)
show.clicked.connect(self.showClicked)
self.setLayout(self.grid)
self.setWindowTitle('SIREN - Power Stations dialog')
QtGui.QShortcut(QtGui.QKeySequence('q'), self, self.quitClicked)
self.show_them = False
self.show()
def plot_com(self):
pylab.plot(
[-p[1] for p in self.com_real], [p[0] for p in self.com_real],
'g-', lw=2)
pylab.plot(
[-p[1] for p in self.com_ref], [p[0] for p in self.com_ref],
'k--', lw=1)
pylab.legend(('$p_G$', '$p_G^{ref}$'), loc='upper right')
pylab.grid(False)
pylab.xlim(self.xlim)
pylab.ylim(self.ylim)
pylab.xlabel(self.xlabel)
pylab.ylabel(self.ylabel)
pylab.title("COM trajectory")
def plot_zmp(self):
pylab.plot(
[-p[1] for p in self.zmp_real], [p[0] for p in self.zmp_real],
'r-', lw=2)
pylab.plot(
[-p[1] for p in self.zmp_ref], [p[0] for p in self.zmp_ref],
'k--', lw=1)
pylab.legend(('$p_Z$', '$p_Z^{ref}$'), loc='upper right')
pylab.grid(False)
pylab.xlim(self.xlim)
pylab.ylim(self.ylim)
pylab.xlabel(self.xlabel)
pylab.ylabel(self.ylabel)
pylab.title("ZMP trajectory")
def test_dT_impact(xvals, f, nmpc, sim, start=0.1, end=0.8, step=0.02, ymax=200,
sample_size=100, label=None):
"""Used to generate Figure XX of the paper."""
c = raw_input("Did you remove iter/time caps in IPOPT settings? [y/N] ")
if c.lower() not in ['y', 'yes']:
print "Then go ahead and do it."
return
stats = [Statistics() for _ in xrange(len(xvals))]
fails = [0. for _ in xrange(len(xvals))]
pylab.ion()
pylab.clf()
for (i, dT) in enumerate(xvals):
f(dT)
for _ in xrange(sample_size):
nmpc.on_tick(sim)
if 'Solve' in nmpc.nlp.return_status:
stats[i].add(nmpc.nlp.solve_time)
else: # max CPU time exceeded, infeasible problem detected, ...
fails[i] += 1.
yvals = [1000 * ts.avg if ts.avg is not None else 0. for ts in stats]
yerr = [1000 * ts.std if ts.std is not None else 0. for ts in stats]
pylab.bar(
xvals, yvals, width=step, yerr=yerr, color='y', capsize=5,
align='center', error_kw={'capsize': 5, 'elinewidth': 5})
pylab.xlim(start - step / 2, end + step / 2)
pylab.ylim(0, ymax)
pylab.grid(True)
if label is not None:
pylab.xlabel(label, fontsize=24)
pylab.ylabel('Comp. time (ms)', fontsize=20)
pylab.tick_params(labelsize=16)
pylab.twinx()
yfails = [100. * fails[i] / sample_size for i in xrange(len(xvals))]
pylab.plot(xvals, yfails, 'ro', markersize=12)
pylab.plot(xvals, yfails, 'r--', linewidth=3)
pylab.xlim(start - step / 2, end + step / 2)
pylab.ylabel("Failure rate [%]", fontsize=20)
pylab.tight_layout()
4(improved-5).py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 42
收藏 0
点赞 0
评论 0
def show_results(self):
pl.plot(self.t1, self.n_A1, 'b--', label='A1, Time Step = 0.05')
pl.plot(self.t1, self.n_B1, 'b', label='B1, Time Step = 0.05')
pl.plot(self.t2, self.n_A2, 'g--', label='A2, Time Step = 0.01')
pl.plot(self.t2, self.n_B2, 'g', label='B2, Time Step = 0.01')
pl.plot(self.t3, self.n_A3, 'r--', label='A3, Time Step = 0.1')
pl.plot(self.t3, self.n_B3, 'r', label='B3, Time Step = 0.1')
pl.title('Double Decay Probelm-Three Time Steps')
pl.xlim(0.0, 2.5)
pl.ylim(0.0, 100.0)
pl.xlabel('time ($s$)')
pl.ylabel('Number of Nuclei')
pl.legend(loc='best', shadow=True, fontsize='small')
pl.grid(True)
4(improved-10) 2.py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 39
收藏 0
点赞 0
评论 0
def show_results(self):
pl.plot(self.t, self.n_A, 'b--', label='Number of Nuclei A')
pl.plot(self.t, self.n_B, 'b', label='Number of Nuclei B')
pl.plot(self.t, self.n_A_true, 'g--', label='True Number of Nuclei A')
pl.plot(self.t, self.n_B_true, 'g', label='True Number of Nuclei B')
pl.title('Double Decay Probelm-Approximation Compared with True')
pl.xlim(0.0, 2.5)
pl.ylim(0.0, 100.0)
pl.xlabel('time ($s$)')
pl.ylabel('Number of Nuclei')
pl.legend(loc='best', shadow=True)
pl.grid(True)
4(improved-6).py 文件源码
项目:computational_physics_N2014301020117
作者: yukangnineteen
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def show_results(self):
pl.plot(self.t, self.n_A, 'b--', label='Number of Nuclei A')
pl.plot(self.t, self.n_B, 'b', label='Number of Nuclei B')
pl.plot(self.t, self.n_A_true, 'g--', label='True Number of Nuclei A')
pl.plot(self.t, self.n_B_true, 'g', label='True Number of Nuclei B')
pl.title('Double Decay Probelm-Approximation Compared with True')
pl.xlim(0.0, 2.5)
pl.ylim(0.0, 100.0)
pl.xlabel('time ($s$)')
pl.ylabel('Number of Nuclei')
pl.legend(loc='best', shadow=True)
pl.grid(True)