python类close()的实例源码

plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False):

    nb_templates = templates.shape[1]
    n_panels     = numpy.ceil(numpy.sqrt(nb_templates))
    mask         = numpy.where(halo > -1)[0]
    clust_idx    = numpy.unique(halo[mask])
    fig          = pylab.figure()    
    square       = True
    center       = len(data[0] - 1)//2
    for count, i in enumerate(xrange(nb_templates)):
        if square:
            pylab.subplot(n_panels, n_panels, count + 1)
            if (numpy.mod(count, n_panels) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_panels*(n_panels - 1)):
                pylab.setp(pylab.gca(), xticks=[])

        subcurves = numpy.where(halo == clust_idx[count])[0]
        for k in numpy.random.permutation(subcurves)[:n_curves]:
            pylab.plot(data[k], '0.5')

        pylab.plot(templates[:, count], 'r')        
        pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5)
        pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5)

        xmin, xmax = pylab.xlim()
        pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--')
        pylab.plot([xmin, xmax], [threshold, threshold], 'k--')
        #pylab.ylim(-1.5*threshold, 1.5*threshold)
        ymin, ymax = pylab.ylim()
        pylab.plot([center, center], [ymin, ymax], 'k--')
        pylab.title('Cluster %d' %i)

    if nb_templates > 0:
        pylab.tight_layout()
    if save:
        pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_artefact(data, save=False):

    fig          = pylab.figure()    
    pylab.plot(data.T)
    if save:
        pylab.savefig(os.path.join(save[0], 'artefact_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_mahalanobis_distribution(data_1, data_2, save=None):
    '''Plot Mahalanobis distribution Before and After'''
    fig = pylab.figure()
    ax = fig.add_subplot(1,2,1)
    if len(data_1) == 3:
        d_gt, d_ngt, d_noi = data_1
    elif len(data_1) == 2:
        d_gt, d_ngt = data_1
    if len(data_1) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("Before")
    ax.set_ylabel("")
    ax.set_xlabel('# Samples')
    ax.set_xlabel('Distances')

    if len(data_2) == 3:
        d_gt, d_ngt, d_noi = data_2
    elif len(data_2) == 2:
        d_gt, d_ngt = data_2
    ax = fig.add_subplot(1,2,2)
    if len(data_2) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("After")
    ax.set_ylabel("")
    ax.set_xlabel('Distances')


    ax.legend()
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
plot.py 文件源码 项目:privcount 作者: privcount 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_bar_chart(page, datasets, dataset_labels, dataset_colors, x_group_labels, err=0, title=None, xlabel='Bins', ylabel='Counts'):
    assert len(datasets) == len(dataset_colors) == len(dataset_labels)
    for dataset in datasets:
        assert len(dataset) == len(datasets[0])
        assert len(dataset) == len(x_group_labels)

    num_x_groups = len(datasets[0])
    x_group_locations = pylab.arange(num_x_groups)
    width = 1.0 / float(len(datasets)+1)

    figure = pylab.figure()
    axis = figure.add_subplot(111)
    bars = []

    for i in xrange(len(datasets)):
        bar = axis.bar(x_group_locations + (width*i), datasets[i], width, yerr=err, color=dataset_colors[i], error_kw=dict(ecolor='pink', lw=3, capsize=6, capthick=3))
        bars.append(bar)

    if title is not None:
        axis.set_title(title)
    if ylabel is not None:
        axis.set_ylabel(ylabel)
    if xlabel is not None:
        axis.set_xlabel(xlabel)

    axis.set_xticks(x_group_locations + width*len(datasets)/2)
    x_tick_names = axis.set_xticklabels(x_group_labels)
    rot = 0 if num_x_groups == 1 else 15
    pylab.setp(x_tick_names, rotation=rot, fontsize=10)
    axis.set_xlim(-width, num_x_groups)
    y_tick_names = axis.get_yticklabels()
    pylab.setp(y_tick_names, rotation=0, fontsize=10)

    axis.legend([bar[0] for bar in bars], dataset_labels)
    page.savefig()
    pylab.close()
vis_corex.py 文件源码 项目:LinearCorex 作者: gregversteeg 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def output_groups(ws, moments, alpha, mis, column_label, thresh=0, prefix=''):
    tc = moments["TC"]
    tcs = moments["TCs"]
    add = moments["additivity"]
    dual = (moments['X_i Y_j'] * moments['X_i Z_j']).T
    f = safe_open(prefix + '/summary/groups.txt', 'w+')
    g = safe_open(prefix + '/summary/groups_no_overlaps.txt', 'w+')
    h = safe_open(prefix + '/summary/summary.txt', 'w+')
    h.write('Group, TC\n')
    m, nv = mis.shape
    f.write('variable, weight, MI\n')
    g.write('variable, weight, MI\n')
    for j in range(m):
        f.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
        g.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
        h.write('%d, %0.6f\n' % (j, tcs[j]))

        inds = np.where(alpha[j] > 0)[0]
        inds = inds[np.argsort(-np.abs(ws)[j][inds])]
        for ind in inds:
            f.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
        inds = np.where(np.argmax(np.abs(ws), axis=0) == j)[0]
        inds = inds[np.argsort(-np.abs(ws)[j][inds])]
        for ind in inds:
            g.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
    h.write('Total: {:f}\n'.format(np.sum(tcs)))
    h.write('The total of individual TCs should approximately equal the objective: {:f}\n'.format(tc))
    h.write('If not, this signals redundancy/synergy in the final solution (measured by additivity: {:f}'.format(add))
    f.close()
    g.close()
    h.close()
vis_corex.py 文件源码 项目:LinearCorex 作者: gregversteeg 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def output_labels(labels, row_label, prefix=''):
    f = safe_open(prefix + '/summary/labels.txt', 'w+')
    ns, m = labels.shape
    for l in range(ns):
        f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
    f.close()
image_ocr.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def on_epoch_end(self, epoch, logs={}):
        self.model.save_weights(os.path.join(self.output_dir, 'weights%02d.h5' % (epoch)))
        self.show_edit_distance(256)
        word_batch = next(self.text_img_gen)[0]
        res = decode_batch(self.test_func, word_batch['the_input'][0:self.num_display_words])
        if word_batch['the_input'][0].shape[0] < 256:
            cols = 2
        else:
            cols = 1
        for i in range(self.num_display_words):
            pylab.subplot(self.num_display_words // cols, cols, i + 1)
            if K.image_data_format() == 'channels_first':
                the_input = word_batch['the_input'][i, 0, :, :]
            else:
                the_input = word_batch['the_input'][i, :, :, 0]
            pylab.imshow(the_input.T, cmap='Greys_r')
            pylab.xlabel('Truth = \'%s\'\nDecoded = \'%s\'' % (word_batch['source_str'][i], res[i]))
        fig = pylab.gcf()
        fig.set_size_inches(10, 13)
        pylab.savefig(os.path.join(self.output_dir, 'e%02d.png' % (epoch)))
        pylab.close()
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_heatmaps(data, labels, alpha, mis, column_label, cont, topk=20, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            order = np.argsort(cont[:,j])
            subdata = data[:, inds][order].T
            subdata -= np.nanmean(subdata, axis=1, keepdims=True)
            subdata /= np.nanstd(subdata, axis=1, keepdims=True)
            columns = [column_label[i] for i in inds]
            sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
            filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
            if not os.path.exists(os.path.dirname(filename)):
                os.makedirs(os.path.dirname(filename))
            plt.title("Latent factor {}".format(j))
            plt.savefig(filename, bbox_inches='tight')
            plt.close('all')
            #plot_rels(data[:, inds], list(map(lambda q: column_label[q], inds)), colors=cont[:, j],
            #          outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_pairplots(data, labels, alpha, mis, column_label, topk=5, prefix='', focus=''):
    cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
    plt.rcParams.update({'font.size': 32})
    m, nv = mis.shape
    for j in range(m):
        inds = np.where(np.logical_and(alpha[j] > 0, mis[j] > 0.))[0]
        inds = inds[np.argsort(- alpha[j, inds] * mis[j, inds])][:topk]
        if focus in column_label:
            ifocus = column_label.index(focus)
            if not ifocus in inds:
                inds = np.insert(inds, 0, ifocus)
        if len(inds) >= 2:
            plt.clf()
            subdata = data[:, inds]
            columns = [column_label[i] for i in inds]
            subdata = pd.DataFrame(data=subdata, columns=columns)

            try:
                sns.pairplot(subdata, kind="reg", diag_kind="kde", size=5, dropna=True)
                filename = '{}/pairplots_regress/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.clf()
            except:
                pass

            subdata['Latent factor'] = labels[:,j]
            try:
                sns.pairplot(subdata, kind="scatter", dropna=True, vars=subdata.columns.drop('Latent factor'), hue="Latent factor", diag_kind="kde", size=5)
                filename = '{}/pairplots/group_num={}.pdf'.format(prefix, j)
                if not os.path.exists(os.path.dirname(filename)):
                    os.makedirs(os.path.dirname(filename))
                plt.suptitle("Latent factor {}".format(j), y=1.01)
                plt.savefig(filename, bbox_inches='tight')
                plt.close('all')
            except:
                pass
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def output_labels(labels, row_label, prefix=''):
    f = safe_open(prefix + '/text_files/labels.txt', 'w+')
    ns, m = labels.shape
    for l in range(ns):
        f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
    f.close()
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def output_strong(tcs, alpha, mis, labels, prefix=''):
    f = safe_open(prefix + '/text_files/most_deterministic_groups.txt', 'w+')
    m, n = alpha.shape
    topk = 5
    ixy = np.clip(np.sum(alpha * mis, axis=1) - tcs, 0, np.inf)
    hys = np.array([entropy(labels[:, j]) for j in range(m)]).clip(1e-6)
    ntcs = [(np.sum(np.sort(alpha[j] * mis[j])[-topk:]) - ixy[j]) / ((topk - 1) * hys[j]) for j in range(m)]

    f.write('Group num., NTC\n')
    for j, ntc in sorted(enumerate(ntcs), key=lambda q: -q[1]):
        f.write('%d, %0.3f\n' % (j, ntc))
    f.close()
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def anomalies(log_z, row_label=None, prefix=''):
    from scipy.special import erf

    ns = log_z.shape[1]
    if row_label is None:
        row_label = list(map(str, range(ns)))
    a_score = np.sum(log_z[:, :, 0], axis=0)
    mean, std = np.mean(a_score), np.std(a_score)
    a_score = (a_score - mean) / std
    percentile = 1. / ns
    anomalies = np.where(0.5 * (1 - erf(a_score / np.sqrt(2)) ) < percentile)[0]
    f = safe_open(prefix + '/text_files/anomalies.txt', 'w+')
    for i in anomalies:
        f.write(row_label[i] + ', %0.1f\n' % a_score[i])
    f.close()
vis_corex.py 文件源码 项目:bio_corex 作者: gregversteeg 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_convergence(tc_history, prefix='', prefix2=''):
    pylab.plot(tc_history)
    pylab.xlabel('# iterations')
    filename = '{}/text_files/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    pylab.savefig(filename)
    pylab.close('all')
    return True
helper.py 文件源码 项目:svm-street-detector 作者: morris-frank 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
parallelism_profile.py 文件源码 项目:ARES 作者: junjieqian 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def getPageSize():
  import resource
  f = open("/proc/meminfo")
  mem = f.readline()
  f.close()
  return resource.getpagesize() / (1024 * float(mem[10:-3].strip()))
func.py 文件源码 项目:robot-dream 作者: research-team 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def save(GUI):
    global txtResultPath
    if GUI:
        import pylab as pl
        import nest.raster_plot
        import nest.voltage_trace
        logger.debug("Saving IMAGES into {0}".format(SAVE_PATH))
        for key in spike_detectors:
            try:
                nest.raster_plot.from_device(spike_detectors[key], hist=True)
                pl.savefig("spikes_" + str(key) +".png", dpi=dpi_n, format='png')
                pl.close()
            except Exception:
                print("From spikes {0} is NOTHING".format(key))
        for key in multimeters:
            try:
                nest.voltage_trace.from_device(multimeters[key])
                pl.savefig("volt_" + str(key) +".png", dpi=dpi_n, format='png')
                pl.close()
            except Exception:
                print("From MM {0} is NOTHING".format(key))

    txtResultPath = SAVE_PATH + 'txt/'
    logger.debug("Saving TEXT into {0}".format(txtResultPath))
    if not os.path.exists(txtResultPath):
        os.mkdir(txtResultPath)
    for key in spike_detectors:
        save_spikes(spike_detectors[key], name=key)
    with open(txtResultPath + 'timeSimulation.txt', 'w') as f:
        for item in times:
            f.write(item)
helper.py 文件源码 项目:VOCSeg 作者: lxh-123 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
helper.py 文件源码 项目:VOCSeg 作者: lxh-123 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''

    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def multipage(filename, figs=None):
        pp = PdfPages(filename)
        if figs is None:
            figs = [plt.figure(n) for n in plt.get_fignums()]
        for fig in figs:
            fig.savefig(pp, format='pdf')
        pp.close()


问题


面经


文章

微信
公众号

扫码关注公众号