python类scatter()的实例源码

plotting.py 文件源码 项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def twoDimensionalScatter(title, title_x, title_y,
                          x, y,
                          lim_x = None, lim_y = None,
                          color = 'b', size = 20, alpha=None):
    """
    Create a two-dimensional scatter plot.

    INPUTS
    """
    pylab.figure()

    pylab.scatter(x, y, c=color, s=size, alpha=alpha, edgecolors='none')

    pylab.xlabel(title_x)
    pylab.ylabel(title_y)
    pylab.title(title)
    if type(color) is not str:
        pylab.colorbar()

    if lim_x:
        pylab.xlim(lim_x[0], lim_x[1])
    if lim_y:
        pylab.ylim(lim_y[0], lim_y[1])

############################################################
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def predicted_vs_actual_y_xgb(self, xgb, best_nrounds, xgb_params, x_train_split, x_test_split, y_train_split,
                                  y_test_split, title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
wordemb-vis-tsne.py 文件源码 项目:nn4nlp-code 作者: neubig 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def display_data(word_vectors, words, target_words=None):
  target_matrix = word_vectors.copy()
  if target_words:
    target_words = [line.strip().lower() for line in open(target_words)][:2000]
    rows = [words.index(word) for word in target_words if word in words]
    target_matrix = target_matrix[rows,:]
  else:
    rows = np.random.choice(len(word_vectors), size=1000, replace=False)
    target_matrix = target_matrix[rows,:]
  reduced_matrix = tsne(target_matrix, 2);

  Plot.figure(figsize=(200, 200), dpi=100)
  max_x = np.amax(reduced_matrix, axis=0)[0]
  max_y = np.amax(reduced_matrix, axis=0)[1]
  Plot.xlim((-max_x,max_x))
  Plot.ylim((-max_y,max_y))

  Plot.scatter(reduced_matrix[:, 0], reduced_matrix[:, 1], 20);

  for row_id in range(0, len(rows)):
      target_word = words[rows[row_id]]
      x = reduced_matrix[row_id, 0]
      y = reduced_matrix[row_id, 1]
      Plot.annotate(target_word, (x,y))
  Plot.savefig("word_vectors.png");
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price(self, x_train, y_train, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
                                0.3, 0.6, 1],
                        max_iter=50000, cv=10)
        # lasso = RidgeCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
        #                         0.3, 0.6, 1], cv=10)

        lasso.fit(x_train_split, y_train_split)
        y_predicted = lasso.predict(X=x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price_xgb(self, xgb_params, x_train, y_train, seed, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)

        res = xgb.cv(xgb_params, dtrain_split, num_boost_round=1000, nfold=4, seed=seed, stratified=False,
                     early_stopping_rounds=25, verbose_eval=10, show_stdv=True)

        best_nrounds = res.shape[0] - 1
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
plot.py 文件源码 项目:adversarial-autoencoder 作者: musyoku 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def scatter_labeled_z(z_batch, label_batch, filename="labeled_z"):
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
    for n in range(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig(filename)
figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def scatter(self, lvl=None, **kwargs):
        defaults = {'c': '0.0', 'color':'k', 'facecolor':'k', 'edgecolor':'None'}
        defaults.update(**kwargs)

        xe = self.e[0] + self.dx * np.arange(0, self.im.shape[1])
        ye = self.e[2] + self.dy * np.arange(0, self.im.shape[0])
        x = self.x
        y = self.y

        if lvl is not None:
            nx = np.ceil(np.interp(x, 0.5 * (xe[:-1] + xe[1:]), range(len(xe) - 1)))
            ny = np.ceil(np.interp(y, 0.5 * (ye[:-1] + ye[1:]), range(len(ye) - 1)))
            nh = [ self.im[nx[k], ny[k]] for k in range(len(x)) ]
            ind = np.where(nh < np.min(lvl))
            plt.scatter(x[ind], y[ind], **kwargs)
        else:
            plt.scatter(x, y, **kwargs)
diagnostic_plots.py 文件源码 项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def starPlot(targ_ra, targ_dec, data, iso, g_radius, nbhd):
    """Star bin plot"""

    mag_g = data[mag_g_dred_flag]
    mag_r = data[mag_r_dred_flag]

    filter = star_filter(data)

    iso_filter = (iso.separation(mag_g, mag_r) < 0.1)

    # projection of image
    proj = ugali.utils.projector.Projector(targ_ra, targ_dec)
    x, y = proj.sphereToImage(data[filter & iso_filter]['RA'], data[filter & iso_filter]['DEC'])

    plt.scatter(x, y, edgecolor='none', s=3, c='black')
    plt.xlim(0.2, -0.2)
    plt.ylim(-0.2, 0.2)
    plt.gca().set_aspect('equal')
    plt.xlabel(r'$\Delta \alpha$ (deg)')
    plt.ylabel(r'$\Delta \delta$ (deg)')

    plt.title('Stars')
rate_viewer.py 文件源码 项目:spyking-circus-ort 作者: spyking-circus 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _plot(self):
        # Called from the main thread
        pylab.ion()

        if not getattr(self, 'data_available', False):
            return

        if self.peaks is not None:

            for key in self.sign_peaks:
                for channel in self.peaks[key].keys():
                    self.rates[key][int(channel)] += len(self.peaks[key][channel])

            pylab.scatter(self.positions[0, :], self.positions[1, :], c=self.rates[key])

        pylab.gca().set_title('Buffer %d' %self.counter)
        pylab.draw()
        return
analyzer.py 文件源码 项目:spyking-circus-ort 作者: spyking-circus 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def view_positions(self, indices=None, time=None):
        if time is None:
            time = 0
        res = self.synthetic_store.get(indices=indices, variables=['x', 'y', 'z'])
        pylab.figure()

        all_x = []
        all_y = []
        all_z = []
        all_c = []

        for key in res.keys():
            all_x += [res[key]['x'][time]]
            all_y += [res[key]['y'][time]]
            all_z += [res[key]['z'][time]]
            all_c += [self._scalarMap_synthetic.to_rgba(int(key))]

        pylab.scatter(self.probe.positions[0, :], self.probe.positions[1, :], c='k')
        pylab.scatter(all_x, all_y, c=all_c)
        pylab.show()
PVAnalysis.py 文件源码 项目:PyPeVoc 作者: goiosunsw 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_time_freq(self, colors=True, ax=None):
        import pylab as pl

        if ax is None:
            fig, allax = pl.subplots(1)
            ax = allax

        # make time matrix same shape as others
        t = np.outer(self.t, np.ones(self.npeaks))
        f = self.f
        if colors:
            mag = 20*np.log10(self.mag)
            ax.scatter(t, f, s=6, c=mag, lw=0)
        else:
            mag = 100 + 20*np.log10(self.mag)
            ax.scatter(t, f, s=mag, lw=0)
        pl.xlabel('Time (s)')
        pl.ylabel('Frequency (Hz)')
        # if colors:
        # cs = pl.colorbar(ax=ax)
        # cs.set_label('Magnitude (dB)')
        # pl.show()
        return ax
PVAnalysis.py 文件源码 项目:PyPeVoc 作者: goiosunsw 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_time_mag(self):
        import pylab as pl

        pl.figure()
        t = np.outer(self.t, np.ones(self.npeaks))
        # f = np.log2(self.f)
        f = self.f
        mag = 20*np.log10(self.mag)
        pl.scatter(t, mag, s=10, c=f, lw=0,
                   norm=pl.matplotlib.colors.LogNorm())
        pl.xlabel('Time (s)')
        pl.ylabel('Magnitude (dB)')
        cs = pl.colorbar()
        cs.set_label('Frequency (Hz)')
        # pl.show()
        return pl.gca()
PVAnalysis.py 文件源码 项目:PyPeVoc 作者: goiosunsw 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_time_freq_mag(self, minlen=10, cm=pl.cm.rainbow):

        cadd = 30
        cmax = 256
        ccur = 0

        part = [pp for pp in self.partial if len(pp.f) > minlen]
        pl.figure()
        pl.hold(True)
        for pp in part:
            # pl.plot(pp.start_idx + np.arange(len(pp.f)), np.array(pp.f))
            mag = 100 + 20*np.log10(np.array(pp.mag))
            pl.scatter(pp.start_idx + np.arange(len(pp.f)), np.array(pp.f),
                       s=mag, c=cm(ccur), lw=0)
            ccur = np.mod(ccur + cadd, cmax)
        pl.hold(False)
        pl.xlabel('Time (s)')
        pl.ylabel('Frequency (Hz)')
        pl.show()
visualizer.py 文件源码 项目:adgm 作者: musyoku 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_z(z, dir=None, filename="z", xticks_range=None, yticks_range=None):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(16.0, 16.0)
    pylab.clf()
    for n in xrange(z.shape[0]):
        result = pylab.scatter(z[n, 0], z[n, 1], s=40, marker="o", edgecolors='none')
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    if xticks_range is not None:
        pylab.xticks(pylab.arange(-xticks_range, xticks_range + 1))
    if yticks_range is not None:
        pylab.yticks(pylab.arange(-yticks_range, yticks_range + 1))
    pylab.savefig("{}/{}.png".format(dir, filename))
common.py 文件源码 项目:mglex 作者: fungs 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def plot_clusters_pca(responsibilities, color_groups):
    from sklearn.decomposition import RandomizedPCA
    import pylab as pl
    from random import shuffle

    colors = list(colors_dict.values())
    shuffle(colors)

    pca = RandomizedPCA(n_components=2)
    X = pca.fit_transform(responsibilities)
    # print >>stderr, pca.explained_variance_ratio_

    pl.figure()
    pl.scatter(X[:, 0], X[:, 1], c="grey", label="unknown")
    for c, sub, i in zip(colors, color_groups, count(0)):
        pl.scatter(X[sub, 0], X[sub, 1], c=c, label=str(i))
    pl.legend()
    pl.title("PCA responsibility matrix")
    pl.show()
util.py 文件源码 项目:variational-autoencoder 作者: musyoku 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def visualize_labeled_z(z_batch, label_batch, dir=None):
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402","#05aaa8","#ac02ab","#aba808","#151515","#94a169", "#bec9cd", "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[label_batch[n]], s=40, marker="o", edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("%s/labeled_z.png" % dir)
GaussClasses.py 文件源码 项目:livespin 作者: biocompibens 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def draw2D_new(self):
        for i in xrange(self.nComponents):
            k1 = np.array([[self.params[6 * i + 3] ** 2, self.params[6 * i + 3] * self.params[6 * i + 4] * self.params[6 * i + 5]],
                           [self.params[6 * i + 3] * self.params[6 * i + 4] * self.params[6 * i + 5], self.params[6 * i + 4] ** 2]])
            w1, v1 = np.linalg.eig(k1)
            idx = w1.argsort()
            w1 = w1[idx]
            v1 = v1[:, idx]
            angle=-(np.arctan(v1[1][1]/v1[0][1]))+np.pi#x+2*(pi/4-x)+pi/2#since in the image X and Y are inverted, so need to minus 90 degree and flip around pi/4

            w2 = np.zeros((1 , 2))
            w2[0,1] = np.sqrt(2)*np.max([self.params[6 * i + 3], self.params[6 * i + 4]])
            w2[0,0] = w2[0,1]*w1[0]/w1[1]

            xeq = lambda t: w2[0,1] * np.cos(t) * np.cos(angle) + w2[0,0] * np.sin(
                t) * np.sin(angle) + self.params[6 * i + 1]
            yeq = lambda t: - w2[0,1] * np.cos(t) * np.sin(angle) + w2[0,0] * np.sin(
                t) * np.cos(angle) + self.params[6 * i + 2]
            t = np.linspace(0, 2 * np.pi, 100)
            x = xeq(t)
            y = yeq(t)
            pylab.scatter(self.params[6 * i + 2], self.params[6 * i +1], color='k')
            pylab.plot(y.astype(int), x.astype(int), self.colors[i] + '-')
GaussClasses.py 文件源码 项目:livespin 作者: biocompibens 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw2D(self, title, image=[]):
        pylab.figure()
        if image == []:
            pylab.imshow(self.image, 'gray')
        else:
            pylab.imshow(image, 'gray')
        pylab.axis('off')
        pylab.autoscale(False)
        for i in xrange(self.nComponents):
            xeq = lambda t: self.params[6 * i + 3] * np.cos(t) * np.cos(self.params[6 * i + 5]) + self.params[
                                                                                                      6 * i + 4] * np.sin(
                t) * np.sin(self.params[6 * i + 5]) + self.params[6 * i + 1]
            yeq = lambda t: - self.params[6 * i + 3] * np.cos(t) * np.sin(self.params[6 * i + 5]) + self.params[
                                                                                                        6 * i + 4] * np.sin(
                t) * np.cos(self.params[6 * i + 5]) + self.params[6 * i + 2]
            t = np.linspace(0, 2 * np.pi, 100)
            x = xeq(t)
            y = yeq(t)
            pylab.scatter(self.params[6 * i + 2], self.params[6 * i + 1], color='k')
            pylab.plot(y.astype(int), x.astype(int), self.colors[i] + '-')
        pylab.savefig(title)
        pylab.close()
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def predicted_vs_actual_y_input_model(self, model, x_train_split, x_test_split, y_train_split, y_test_split,
                                          title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
megafacade.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_facade_cuts(self):

        facade_sig = self.facade_edge_scores.sum(0)
        facade_cuts = find_facade_cuts(facade_sig, dilation_amount=self.facade_merge_amount)
        mu = np.mean(facade_sig)
        sigma = np.std(facade_sig)

        w = self.rectified.shape[1]
        pad=10

        gs1 = pl.GridSpec(5, 5)
        gs1.update(wspace=0.5, hspace=0.0)  # set the spacing between axes.

        pl.subplot(gs1[:3, :])
        pl.imshow(self.rectified)
        pl.vlines(facade_cuts, *pl.ylim(), lw=2, color='black')
        pl.axis('off')
        pl.xlim(-pad, w+pad)

        pl.subplot(gs1[3:, :], sharex=pl.gca())
        pl.fill_between(np.arange(w), 0, facade_sig, lw=0, color='red')
        pl.fill_between(np.arange(w), 0, np.clip(facade_sig, 0, mu+sigma), color='blue')
        pl.plot(np.arange(w), facade_sig, color='blue')

        pl.vlines(facade_cuts, facade_sig[facade_cuts], pl.xlim()[1], lw=2, color='black')
        pl.scatter(facade_cuts, facade_sig[facade_cuts])

        pl.axis('off')

        pl.hlines(mu, 0, w, linestyle='dashed', color='black')
        pl.text(0, mu, '$\mu$ ', ha='right')

        pl.hlines(mu + sigma, 0, w, linestyle='dashed', color='gray',)
        pl.text(0, mu + sigma, '$\mu+\sigma$ ', ha='right')
        pl.xlim(-pad, w+pad)
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price_input_model(self, model, x_train, y_train, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        model.fit(x_train_split, y_train_split)
        y_predicted = model.predict(x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
SVMClassifier.py 文件源码 项目:MLLearning 作者: buptdjd 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def svm_figure_generate(w, b, support_vectors, X):
    k = - w[0]/w[1]
    x = np.linspace(-5, 5)
    y = k*x - b/w[1]
    sv_1 = support_vectors[0]
    yy_down = k*x + (sv_1[1]-k*sv_1[0])
    sv_2 = support_vectors[-1]
    yy_up = k*x + (sv_2[1] - k*sv_2[0])
    pl.plot(x, y, 'k-')
    pl.plot(x, yy_up, 'k--')
    pl.plot(x, yy_down, 'k--')
    pl.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, facecolor='none')
    pl.scatter(X[:, 0], X[:, 1], c='Y', cmap=pl.cm.Paired)
    pl.axis('tight')
    pl.show()
plot.py 文件源码 项目:adversarial-autoencoder 作者: musyoku 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def scatter_z(z_batch, filename="z"):
    if dir is None:
        raise Exception()
    try:
        os.mkdir(dir)
    except:
        pass
    fig = pylab.gcf()
    fig.set_size_inches(20.0, 16.0)
    pylab.clf()
    for n in range(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], s=40, marker="o", edgecolors='none')
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig(filename)
ui.py 文件源码 项目:autoxd 作者: nessessary 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def DrawScatt(pl, x,y, title=''):
    pl.figure
    prop = fm.FontProperties(fname="c:/windows/fonts/simsun.ttc")
    if title != "":
        pl.title(title, fontproperties=prop)
    pl.scatter(x,y)
    pl.ylabel(u"???", fontproperties=prop)
    pl.xlabel(u"????(?)", fontproperties=prop)
    pl.show()
    pl.close()
ui.py 文件源码 项目:autoxd 作者: nessessary 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def draw3d(df=None, titles=None, datas=None):
    """?3d"""
    #???c??????
    from mpl_toolkits.mplot3d.axes3d import Axes3D

    def genDf():
        df = pd.DataFrame([])
        for i in range(3):
            n = agl.array_random(100)
            df[i] = n
        return df
    if df is None:
        df = genDf()
    assert(len(df.columns)>=3)
    X, Y, Z = np.array(df[df.columns[0]]), np.array(df[df.columns[1]]), np.array(df[df.columns[2]])
    fig = plt.figure(figsize=(8,6))
    ax = fig.add_subplot(1, 1, 1, projection='3d')
    p = ax.scatter(X, Y, Z)

    if datas is not None:
        for i in range(len(datas)):
            df = datas[i][0]
            x, y, z = np.array(df[df.columns[0]]), np.array(df[df.columns[1]]), np.array(df[df.columns[2]])
            c = str(datas[i][1])
            ax.scatter(x,y,z, c=c)

    if titles is not None and len(titles)>=3:
        ax.set_xlabel(titles[0])
        ax.set_ylabel(titles[1])
        ax.set_zlabel(titles[2])    

    plt.show()
publish.py 文件源码 项目:autoxd 作者: nessessary 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None,
                vmax=None, alpha=None, linewidths=None, verts=None, hold=None,
                **kwargs):
        pl.scatter(x,y,s,c,marker,cmap,norm,vmin,vmax,alpha,linewidths,verts,hold,**kwargs)
figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot(self, contour={}, scatter={}, **kwargs):
        # levels = np.linspace(self.im.min(), self.im.max(), 10)[1:]
        levels = self.nice_levels()
        c_defaults = {'origin': 'lower', 'cmap': plt.cm.Greys_r, 'levels':
                      levels}
        c_defaults.update(**contour)

        c = self.contourf(**c_defaults)

        lvls = np.sort(c.levels)
        s_defaults = {'c': '0.0', 'edgecolor':'None', 's':2}
        s_defaults.update(**scatter)

        self.scatter(lvl=[lvls], **s_defaults)
utils.py 文件源码 项目:chainer-adversarial-autoencoder 作者: fukuta0614 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def visualize_10_2d_gaussian_prior(n_z, y_label, visualization_dir=None):
    z_batch = sample_z_from_n_2d_gaussian_mixture(len(y_label), n_z, y_label, 10, False)
    z_batch = z_batch.data

    fig = pylab.gcf()
    fig.set_size_inches(15, 12)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402", "#05aaa8", "#ac02ab", "#aba808", "#151515", "#94a169", "#bec9cd",
              "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[y_label[n]], s=40, marker="o",
                               edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    if visualization_dir is not None:
        pylab.savefig("%s/10_2d-gaussian.png" % visualization_dir)
    pylab.show()
utils.py 文件源码 项目:chainer-adversarial-autoencoder 作者: fukuta0614 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def visualize_labeled_z(xp, model, x, y_label, visualization_dir, epoch, gpu=False):
    x = chainer.Variable(xp.asarray(x))
    z_batch = model.encode(x, test=True)
    z_batch.to_cpu()
    z_batch = z_batch.data
    fig = pylab.gcf()
    fig.set_size_inches(8.0, 8.0)
    pylab.clf()
    colors = ["#2103c8", "#0e960e", "#e40402", "#05aaa8", "#ac02ab", "#aba808", "#151515", "#94a169", "#bec9cd",
              "#6a6551"]
    for n in xrange(z_batch.shape[0]):
        result = pylab.scatter(z_batch[n, 0], z_batch[n, 1], c=colors[y_label[n]], s=40, marker="o",
                               edgecolors='none')

    classes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
    recs = []
    for i in range(0, len(colors)):
        recs.append(mpatches.Rectangle((0, 0), 1, 1, fc=colors[i]))

    ax = pylab.subplot(111)
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(recs, classes, loc="center left", bbox_to_anchor=(1.1, 0.5))
    pylab.xticks(pylab.arange(-4, 5))
    pylab.yticks(pylab.arange(-4, 5))
    pylab.xlabel("z1")
    pylab.ylabel("z2")
    pylab.savefig("{}/labeled_z_{}.png".format(visualization_dir, epoch))
    # pylab.show()


问题


面经


文章

微信
公众号

扫码关注公众号