python类title()的实例源码

plotting.py 文件源码 项目:ugali 作者: DarkEnergySurvey 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def twoDimensionalScatter(title, title_x, title_y,
                          x, y,
                          lim_x = None, lim_y = None,
                          color = 'b', size = 20, alpha=None):
    """
    Create a two-dimensional scatter plot.

    INPUTS
    """
    pylab.figure()

    pylab.scatter(x, y, c=color, s=size, alpha=alpha, edgecolors='none')

    pylab.xlabel(title_x)
    pylab.ylabel(title_y)
    pylab.title(title)
    if type(color) is not str:
        pylab.colorbar()

    if lim_x:
        pylab.xlim(lim_x[0], lim_x[1])
    if lim_y:
        pylab.ylim(lim_y[0], lim_y[1])

############################################################
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def view_loss_curve(losss, title=None, save=None):
    '''Plot loss curve'''
    x_min = 1
    x_max = len(losss) - 1
    fig = pylab.figure()
    ax = fig.gca()
    ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid')
    ax.grid(True, which='both')
    if title is None:
        ax.set_title("Loss curve")
    else:
        ax.set_title(title)
    ax.set_xlabel("iteration")
    ax.set_ylabel("loss")
    ax.set_xlim([x_min - 1, x_max + 1])
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
postprocessing_stance.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def display_results_figure(results, METRIC):
    import pylab as pb
    color = iter(pb.cm.rainbow(np.linspace(0, 1, len(results))))
    plots = []
    for method in results.keys():
        x = []
        y = []
        for train_perc in sorted(results[method].keys()):
            x.append(train_perc)
            y.append(results[method][train_perc][0])
        c = next(color)
        (pi, ) = pb.plot(x, y, color=c)
        plots.append(pi)
    from matplotlib.font_manager import FontProperties
    fontP = FontProperties()
    fontP.set_size('small')
    pb.legend(plots, map(method_name_mapper, results.keys()),
              prop=fontP, bbox_to_anchor=(0.6, .65))
    pb.xlabel('#Tweets from target rumour for training')
    pb.ylabel('Accuracy')
    pb.title(METRIC.__name__)
    pb.savefig('incrementing_training_size.png')
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def predicted_vs_actual_y_xgb(self, xgb, best_nrounds, xgb_params, x_train_split, x_test_split, y_train_split,
                                  y_test_split, title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
assess.py 文件源码 项目:ndparse 作者: neurodata 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def display_pr_curve(precision, recall):
    # following examples from sklearn

    # TODO:  f1 operating point

    import pylab as plt
    # Plot Precision-Recall curve
    plt.clf()
    plt.plot(recall, precision, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('Precision-Recall example: Max f1={0:0.2f}'.format(max_f1))
    plt.legend(loc="lower left")
    plt.show()
astrom_common.py 文件源码 项目:astromalign 作者: dstndstn 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotaffine(aff, RR, DD, exag=1000, affineOnly=False, doclf=True, **kwargs):
    import pylab as plt
    if doclf:
        plt.clf()
    if affineOnly:
        dr,dd = aff.getAffineOffset(RR, DD)
    else:
        rr,dd = aff.apply(RR, DD)
        dr = rr - RR
        dd = dd - DD
    #plt.plot(RR, DD, 'r.')
    #plt.plot(RR + dr*exag, DD + dd*exag, 'bx')
    plt.quiver(RR, DD, exag*dr, exag*dd,
               angles='xy', scale_units='xy', scale=1,
               pivot='middle', color='b', **kwargs)
               #pivot='tail'
    ax = plt.axis()
    plt.plot([aff.getReferenceRa()], [aff.getReferenceDec()], 'r+', mew=2, ms=5)
    plt.axis(ax)
    esuf = ''
    if exag != 1.:
        esuf = ' (x %g)' % exag
    plt.title('Affine transformation found' + esuf)
rectify.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_rectified(self):
        import pylab
        pylab.title('rectified')
        pylab.imshow(self.rectified)

        for line in self.vlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
rectify.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_original(self):
        import pylab
        pylab.title('original')
        pylab.imshow(self.data)

        for line in self.lines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)

        for line in self.vlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
import_labelme.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot(self):
        """ Plot the layer data (for debugging)
        :return: The current figure
        """
        import pylab as pl
        aspect = self.nrows / float(self.ncols)
        figure_width = 6 #inches

        rows = max(1, int(np.sqrt(self.nlayers)))
        cols = int(np.ceil(self.nlayers/rows))
        # noinspection PyUnresolvedReferences
        pallette = {i:rgb for (i, rgb) in enumerate(pl.cm.jet(np.linspace(0, 1, 4), bytes=True))}
        f, a = pl.subplots(rows, cols)
        f.set_size_inches(6 * cols, 6 * rows)
        a = a.flatten()
        for i, label in enumerate(self.label_names):
            pl.sca(a[i])
            pl.title(label)
            pl.imshow(self.color_data)
            pl.imshow(colorize(self.label_data[:, :, i], pallette), alpha=0.5)
            # axis('off')
        return f
model.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot(self, overlay_alpha=0.5):
        import pylab as pl
        rows = int(sqrt(self.layers()))
        cols = int(ceil(self.layers()/rows))

        for i in range(rows*cols):
            pl.subplot(rows, cols, i+1)
            pl.axis('off')
            if i >= self.layers():
                continue
            pl.title('{}({})'.format(self.labels[i], i))
            pl.imshow(self.image)
            pl.imshow(colorize(self.features[i].argmax(0),
                               colors=np.array([[0,     0, 255],
                                                [0,   255, 255],
                                                [255, 255, 0],
                                                [255, 0,   0]])),
                      alpha=overlay_alpha)
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 43 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
swing_foot_control.py 文件源码 项目:dynamic-walking 作者: stephane-caron 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_profiles(self):
        """
        Plot TOPP profiles, e.g. for debugging.
        """
        import pylab
        pylab.ion()
        self.topp.WriteProfilesList()
        self.topp.WriteSwitchPointsList()
        profileslist = TOPP.TOPPpy.ProfilesFromString(
            self.topp.resprofilesliststring)
        switchpointslist = TOPP.TOPPpy.SwitchPointsFromString(
            self.topp.switchpointsliststring)
        TOPP.TOPPpy.PlotProfiles(profileslist, switchpointslist)
        TOPP.TOPPpy.PlotAlphaBeta(self.topp)
        pylab.title("%s phase profile" % type(self).__name__)
        pylab.axis([0, 1, 0, 10])
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price(self, x_train, y_train, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
                                0.3, 0.6, 1],
                        max_iter=50000, cv=10)
        # lasso = RidgeCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1,
        #                         0.3, 0.6, 1], cv=10)

        lasso.fit(x_train_split, y_train_split)
        y_predicted = lasso.predict(X=x_test_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
house_prices.py 文件源码 项目:HousePrices 作者: MizioAnd 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predicted_vs_actual_sale_price_xgb(self, xgb_params, x_train, y_train, seed, title_name):
        # Split the training data into an extra set of test
        x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)

        res = xgb.cv(xgb_params, dtrain_split, num_boost_round=1000, nfold=4, seed=seed, stratified=False,
                     early_stopping_rounds=25, verbose_eval=10, show_stdv=True)

        best_nrounds = res.shape[0] - 1
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual Sale Price')
        plt.ylabel('Predicted Sale Price')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
sentisignal.py 文件源码 项目:sentisignal 作者: jonathanmanfield 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def check_acf(df):
    df_num = df.select_dtypes(include=[np.float, np.int])
    for index in df_num.columns:
        plt.figure(figsize=(8,10))
        if index in ['LOG_BULL_RETURN', 'LOG_BEAR_RETURN','RTISf', 'TOTAL_SCANNED_MESSAGES_DIFF', 'TOTAL_SENTIMENT_MESSAGES_DIFF']:
            fig = sm.graphics.tsa.plot_acf(df_num[index][1:],lags=40)
            plt.title(index)
        elif index in ['LOG_BULL_BEAR_RATIO']:
            fig = sm.graphics.tsa.plot_acf(df_num[index][2:],lags=40)
            plt.title(index)
        else: 
            fig = sm.graphics.tsa.plot_acf(df_num[index],lags=40)
            plt.title(index)
    return fig

# check adf test
4(improved-7).py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show_results(self):
        pl.plot(self.t1, self.n_A1, 'b--', label='A1: Time Step = 0.05')
        pl.plot(self.t1, self.n_B1, 'b', label='B1: Time Step = 0.05')
        pl.plot(self.t2, self.n_A2, 'g--', label='A2: Time Step = 0.1')
        pl.plot(self.t2, self.n_B2, 'g', label='B2: Time Step = 0.1')
        pl.plot(self.t1, self.n_A1_true, 'r--', label='True A1: Time Step = 0.05')
        pl.plot(self.t1, self.n_B1_true, 'r', label='True B1: Time Step = 0.05')
        pl.plot(self.t2, self.n_A2_true, 'c--', label='True A2: Time Step = 0.1')
        pl.plot(self.t2, self.n_B2_true, 'c', label='True B2: Time Step = 0.1')
        pl.title('Double Decay Probelm-Approximation Compared with True in Defferent Time Steps')
        pl.xlim(0.0, 0.1)
        pl.ylim(0.0, 100.0)
        pl.xlabel('time ($s$)')
        pl.ylabel('Number of Nuclei')
        pl.legend(loc='best', shadow=True, fontsize='small')
        pl.grid(True)
        pl.savefig("computational_physics homework 4(improved-7).png")
7 code plus.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def show(self):
#        pl.semilogy(self.theta, self.omega)
#                , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D)
        pl.plot(self.theta_phase ,self.omega_phase, '.', label = '$t \\approx 2\\pi n / \\Omega_D$')
        pl.xlabel('$\\theta$ (radians)')
        pl.ylabel('$\\omega$ (radians/s)')
        pl.legend()
#        pl.text(-1.4, 0.3, '$\\omega$ versus $\\theta$ $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
#        pl.show()
#        pl.semilogy(self.time_array, self.delta)
#        pl.legend(loc = 'upper center', fontsize = 'small')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta (radians)$')
#        pl.xlim(0, self.T)
#        pl.ylim(float(input('ylim-: ')),float(input('ylim+: ')))
#        pl.ylim(1E-11, 0.01)
#        pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method')
#        pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$')
#        pl.title('Simple Harmonic Motion')
        pl.title('Chaotic Regime')
7 code plus.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
7 code.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
6 code.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def show_complex(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 16,
        }
        pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
        pl.plot(self.x, self.y, label = '$v_0 = %.5f m/s$'%self.v0 + ', ' + '$\\theta = %.4f \degree$'%self.theta)
        pl.xlabel('x $m$')
        pl.ylabel('y $m$')
        pl.xlim(0, 300)
        pl.ylim(-100, 20)
        pl.grid()
        pl.legend(loc = 'upper right', shadow = True, fontsize = 'small')
        pl.text(15, -90, 'scan to approach the minimum velocity and corresponding launching angle', fontdict = font)
        pl.show()
6 code.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def show_simple(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 16,
        }
        pl.title('The Trajectory of Tageted Baseball\n with air flow in adiabatic model', fontdict = font)
        pl.plot(self.x, self.y, label ='$\\alpha = %.0f \degree$'%self.alpha)
        pl.xlabel('x $m$')
        pl.ylabel('y $m$')
        pl.xlim(0, 400)
        pl.ylim(-100, 200)
        pl.grid()
        pl.legend(loc = 'upper right', shadow = True, fontsize = 'medium')
        pl.text(5, -80, 'trojectories varing with angles of wind', fontdict = font)
        pl.show()
5 code 1.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 14,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(41, 16, 'Only with air drag', fontdict = font)
        pl.show()
5 code 2.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34, 16, '       With both air drag and \n reduced air density-isothermal', fontdict = font)
        pl.show()
5 code 3.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def show_results(self):
        font = {'family': 'serif',
                'color':  'k',
                'weight': 'normal',
                'size': 12,
        }
        pl.plot(self.x, self.y, 'c', label='firing angle = 45°')
        pl.title('The Trajectory of a Cannon Shell', fontdict = font)
        pl.xlabel('x (k$m$)')
        pl.ylabel('y ($km$)')
        pl.xlim(0, 60)
        pl.ylim(0, 20)
        pl.grid(True)
        pl.legend(loc='upper right', shadow=True, fontsize='large')
        pl.text(34.5, 16, '       With both air drag and \n reduced air density-adiabatic', fontdict = font)
        pl.show()
ui.py 文件源码 项目:autoxd 作者: nessessary 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def DrawDvs(pl, closes, curve, sign, dvs, pandl, sh, title, leag=None, lad=None ):
    pl.figure
    pl.subplot(311)
    pl.title("id:%s Sharpe ratio: %.2f"%(str(title),sh))
    pl.plot(closes)
    DrawLine(pl, sign, closes)
    pl.subplot(312)
    pl.grid()
    if dvs != None:
        pl.plot(dvs)
    if isinstance(curve, np.ndarray):
        DrawZZ(pl, curve, 'r')
    if leag != None:
        pl.plot(leag, 'r')
    if lad != None:
        pl.plot(lad, 'b')
    #pl.plot(stock.GuiYiHua(closes[:i])[60:])
    pl.subplot(313)
    pl.plot(sign)
    pl.plot(pandl)
    pl.show()
    pl.close()
ui.py 文件源码 项目:autoxd 作者: nessessary 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def TradeResult_Boll(pl, bars, trade_positions, zhijin,changwei, title=''):
    """??????
    bars: df ???  c????
    trade_positions: np.darray or df ????
    zhijin: df index?bars
    changwei: df index?bars
    title: str ??????decode(utf8)
    """

    signals = pd.DataFrame(index=bars.index)
    signals['signal'] = 0.0
    signals['signal'] = np.zeros(len(bars['c']))
    if agl.IsNone(trade_positions):
        signals['positions'] = signals['signal'].diff()  
        signals['positions'][10] = 1
        signals['positions'][13] = 1
        signals['positions'][20] = -1
    else:
        signals['positions'] = trade_positions
    ShowTradeResult2(pl, bars, signals, zhijin,changwei , 0, title=title)


问题


面经


文章

微信
公众号

扫码关注公众号