python类figure()的实例源码

figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def despine(fig=None, ax=None, top=True, right=True,
            left=False, bottom=False):
    """Remove the top and right spines from plot(s).

    fig : matplotlib figure
        figure to despine all axes of, default uses current figure
    ax : matplotlib axes
        specific axes object to despine
    top, right, left, bottom : boolean
        if True, remove that spine

    """
    if fig is None and ax is None:
        axes = plt.gcf().axes
    elif fig is not None:
        axes = fig.axes
    elif ax is not None:
        axes = [ax]

    for ax_i in axes:
        for side in ["top", "right", "left", "bottom"]:
            ax_i.spines[side].set_visible(not locals()[side])
figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def setMargins(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None):
        """
        Tune the subplot layout via the meanings (and suggested defaults) are::

            left  = 0.125  # the left side of the subplots of the figure
            right = 0.9    # the right side of the subplots of the figure
            bottom = 0.1   # the bottom of the subplots of the figure
            top = 0.9      # the top of the subplots of the figure
            wspace = 0.2   # the amount of width reserved for blank space between subplots
            hspace = 0.2   # the amount of height reserved for white space between subplots

        The actual defaults are controlled by the rc file

        """
        plt.subplots_adjust(left, bottom, right, top, wspace, hspace)
        plt.draw_if_interactive()
figrc.py 文件源码 项目:tap 作者: mfouesneau 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def setNmajors(xval=None, yval=None, ax=None, mode='auto', **kwargs):
        """
        setNmajors - set major tick number
        see figure.MaxNLocator for kwargs
        """
        if ax is None:
                ax = plt.gca()
        if (mode == 'fixed'):
                if xval is not None:
                        ax.xaxis.set_major_locator(MaxNLocator(xval, **kwargs))
                if yval is not None:
                        ax.yaxis.set_major_locator(MaxNLocator(yval, **kwargs))
        elif (mode == 'auto'):
                if xval is not None:
                        ax.xaxis.set_major_locator(AutoLocator(xval, **kwargs))
                if yval is not None:
                        ax.yaxis.set_major_locator(AutoLocator(yval, **kwargs))

        plt.draw_if_interactive()
test_visualization.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_axes():
    try:
        import matplotlib
        version = matplotlib.__version__.split("-")[0]
        version = version.split(".")[:2]
        if [int(_) for _ in version] < [0,99]:
            raise ImportError
        import pylab
    except ImportError:
        print("\nSkipping test (pylab not available or too old version)\n")
        return
    fig = pylab.figure()
    axes = fig.add_subplot(111)
    for ctx in [mp, fp]:
        ctx.plot(lambda x: x**2, [0, 3], axes=axes)
        assert axes.get_xlabel() == 'x'
        assert axes.get_ylabel() == 'f(x)'

    fig = pylab.figure()
    axes = fig.add_subplot(111)
    for ctx in [mp, fp]:
        ctx.cplot(lambda z: z, [-2, 2], [-10, 10], axes=axes)
    assert axes.get_xlabel() == 'Re(z)'
    assert axes.get_ylabel() == 'Im(z)'
proj.py 文件源码 项目:PyME 作者: vikramsunkara 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_reg_2D_stoc(X,stoc_vector):

    deter_vec = np.invert(stoc_vector)

    dom_max = np.amax(X[stoc_vector,:]) + 1

    A = np.zeros((dom_max,dom_max))

    stoc_indexs = np.arange(0,X.shape[0],1)[stoc_vector].astype(int)

    for i,deter_element in enumerate(deter_vec):
        if deter_element == True:
            A[X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int)] = X[i,:]
            pl.figure(i)
            #ax = fig.gca(projection='3d')
            #surf = ax.plot_surface(X[int(stoc_indexs[0]),:].astype(int), X[int(stoc_indexs[1]),:].astype(int),X[i,:], rstride=1, cstride=1,
#cmap=cm.coolwarm,linewidth=0, antialiased=False)
            pl.contour(A,X[i,:])
            #ax.zaxis.set_major_locator(LinearLocator(10))
            #ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
            #fig.colorbar(surf, shrink=0.5, aspect=5)
            pl.show()
mds.py 文件源码 项目:RNNVis 作者: myaooo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test():

    points = square_points(10)

    distance = np.zeros((100,100))
    for (i, pointi) in enumerate(points):
        for (j, pointj) in enumerate(points):
            distance[i, j] = norm(pointi - pointj)

    Y, eigs = mds(distance)

    pylab.figure(1)
    pylab.plot(Y[:, 0], Y[:, 1], '.')

    pylab.figure(2)
    pylab.plot(points[:, 0], points[:, 1], '.')

    pylab.show()
rbm_vis.py 文件源码 项目:fang 作者: rgrosse 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def show_particles(rbm, state, dataset, display=True, figname='PCD particles', figtitle='PCD particles',
                   size=None):
    try:
        fantasy_vis = rbm.vis_expectations(state.h)
    except:
        fantasy_vis = state

    if size is None:
        size = (dataset.num_rows, dataset.num_cols)
    imgs = [fantasy_vis[j, :np.prod(size)].reshape(size).as_numpy_array()
            for j in range(fantasy_vis.shape[0])]
    visual = misc.norm01(misc.pack(imgs))
    if display:
        pylab.figure(figname)
        pylab.matshow(visual, cmap='gray', fignum=False)
        pylab.title(figtitle)
    return visual
diagnostics.py 文件源码 项目:fang 作者: rgrosse 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def show_chains(rbm, state, dataset, num_particles=20, num_samples=20, show_every=10, display=True,
                figname='Gibbs chains', figtitle='Gibbs chains'):
    samples = gnp.zeros((num_particles, num_samples, state.v.shape[1]))
    state = state[:num_particles, :, :]

    for i in range(num_samples):
        samples[:, i, :] = rbm.vis_expectations(state.h)

        for j in range(show_every):
            state = rbm.step(state)

    npix = dataset.num_rows * dataset.num_cols
    rows = [vm.hjoin([samples[i, j, :npix].reshape((dataset.num_rows, dataset.num_cols)).as_numpy_array()
                      for j in range(num_samples)],
                     normalize=False)
            for i in range(num_particles)]
    grid = vm.vjoin(rows, normalize=False)

    if display:
        pylab.figure(figname)
        pylab.matshow(grid, cmap='gray', fignum=False)
        pylab.title(figtitle)
        pylab.gcf().canvas.draw()

    return grid
fisher_vis.py 文件源码 项目:fang 作者: rgrosse 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_eigenspectrum(G, s, nvis, nhid):
    with misc.gnumpy_conversion_check('allow'):
        dim = G.shape[0]
        d, Q = scipy.linalg.eigh(G)
        d = d[::-1]
        Q = Q[:, ::-1]

        pts = np.unique(np.floor(np.logspace(0., np.log10(dim-1), 500)).astype(int)) - 1

        cf = [fisher.correlation_fraction(Q[:, i], s, nvis, nhid) for i in pts]

        pylab.figure()
        pylab.subplot(2, 1, 1)
        pylab.loglog(range(1, dim+1), d, 'b-', lw=2.)
        pylab.xticks([])
        pylab.yticks(fontsize='large')

        pylab.subplot(2, 1, 2)
        pylab.semilogx(pts+1, cf, 'r-', lw=2.)
        pylab.xticks(fontsize='x-large')
        pylab.yticks(fontsize='large')
analyzer.py 文件源码 项目:spyking-circus-ort 作者: spyking-circus 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def view_positions(self, indices=None, time=None):
        if time is None:
            time = 0
        res = self.synthetic_store.get(indices=indices, variables=['x', 'y', 'z'])
        pylab.figure()

        all_x = []
        all_y = []
        all_z = []
        all_c = []

        for key in res.keys():
            all_x += [res[key]['x'][time]]
            all_y += [res[key]['y'][time]]
            all_z += [res[key]['z'][time]]
            all_c += [self._scalarMap_synthetic.to_rgba(int(key))]

        pylab.scatter(self.probe.positions[0, :], self.probe.positions[1, :], c='k')
        pylab.scatter(all_x, all_y, c=all_c)
        pylab.show()
random_walk.py 文件源码 项目:MIT-CS-lectures 作者: William-Python-King 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def ansQuest(maxTime,numTrials):
    means=[]
    distLists=performSim(maxTime,numTrials)
    for t in range(maxTime+1):
        tot=0.0
        for distL  in  distLists:
            tot+=distL[t]
        means.append(tot/len(distL))
    pylab.figure()
    pylab.plot(means)
    pylab.xlabel('distance')
    pylab.ylabel('time')
    pylab.title('Average Distance  vs. Time ('+str(len(distLists))+'trials)')
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01):
    # Receptive Fields Summary
    try:
        W = layer.W
    except:
        W = layer
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) 
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))

    fig = mpl.figure(figOffset); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,np.shape(fields)[0]):
        im = grid[i].imshow(fields[i],cmap=cmap); 

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    # 
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    try:
        W = layer.output
    except:
        W = layer
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf(); 

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01):
    # Receptive Fields Summary
    W = layer.W
    wp = W.eval().transpose();
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape)
    else:           # Convolutional layer already has shape
        features, channels, iy, ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    fieldsN = min(fields.shape[0],maxFields)
    perRow = int(math.floor(math.sqrt(fieldsN)))
    perColumn = int(math.ceil(fieldsN/float(perRow)))

    fig = mpl.figure(figName); mpl.clf()

    # Using image grid
    from mpl_toolkits.axes_grid1 import ImageGrid
    grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single')
    for i in range(0,fieldsN):
        im = grid[i].imshow(fields[i],cmap=cmap);

    grid.cbar_axes[0].colorbar(im)
    mpl.title('%s Receptive Fields' % layer.name)

    # old way
    # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    # tiled = []
    # for i in range(0,perColumn*perRow,perColumn):
    #   tiled.append(np.hstack(fields2[i:i+perColumn]))
    #
    # tiled = np.vstack(tiled)
    # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar();
    mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
TensorFlowInterface.py 文件源码 项目:IntroToDeepLearning 作者: robb-brown 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None):
    # Output summary
    W = layer.output
    wp = W.eval(feed_dict=feed_dict);
    if len(np.shape(wp)) < 4:       # Fully connected layer, has no shape
        temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel()
        fields = np.reshape(temp,[1]+fieldShape)
    else:           # Convolutional layer already has shape
        wp = np.rollaxis(wp,3,0)
        features, channels, iy,ix = np.shape(wp)
        if channel is not None:
            fields = wp[:,channel,:,:]
        else:
            fields = np.reshape(wp,[features*channels,iy,ix])

    perRow = int(math.floor(math.sqrt(fields.shape[0])))
    perColumn = int(math.ceil(fields.shape[0]/float(perRow)))
    fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))])
    tiled = []
    for i in range(0,perColumn*perRow,perColumn):
        tiled.append(np.hstack(fields2[i:i+perColumn]))

    tiled = np.vstack(tiled)
    if figOffset is not None:
        mpl.figure(figOffset); mpl.clf();

    mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def view_waveforms_clusters(data, halo, threshold, templates, amps_lim, n_curves=200, save=False):

    nb_templates = templates.shape[1]
    n_panels     = numpy.ceil(numpy.sqrt(nb_templates))
    mask         = numpy.where(halo > -1)[0]
    clust_idx    = numpy.unique(halo[mask])
    fig          = pylab.figure()    
    square       = True
    center       = len(data[0] - 1)//2
    for count, i in enumerate(xrange(nb_templates)):
        if square:
            pylab.subplot(n_panels, n_panels, count + 1)
            if (numpy.mod(count, n_panels) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_panels*(n_panels - 1)):
                pylab.setp(pylab.gca(), xticks=[])

        subcurves = numpy.where(halo == clust_idx[count])[0]
        for k in numpy.random.permutation(subcurves)[:n_curves]:
            pylab.plot(data[k], '0.5')

        pylab.plot(templates[:, count], 'r')        
        pylab.plot(amps_lim[count][0]*templates[:, count], 'b', alpha=0.5)
        pylab.plot(amps_lim[count][1]*templates[:, count], 'b', alpha=0.5)

        xmin, xmax = pylab.xlim()
        pylab.plot([xmin, xmax], [-threshold, -threshold], 'k--')
        pylab.plot([xmin, xmax], [threshold, threshold], 'k--')
        #pylab.ylim(-1.5*threshold, 1.5*threshold)
        ymin, ymax = pylab.ylim()
        pylab.plot([center, center], [ymin, ymax], 'k--')
        pylab.title('Cluster %d' %i)

    if nb_templates > 0:
        pylab.tight_layout()
    if save:
        pylab.savefig(os.path.join(save[0], 'waveforms_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def view_artefact(data, save=False):

    fig          = pylab.figure()    
    pylab.plot(data.T)
    if save:
        pylab.savefig(os.path.join(save[0], 'artefact_%s' %save[1]))
        pylab.close()
    else:
        pylab.show()
    del fig
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_raw_templates(file_name, n_temp=2, square=True):

    N_e, N_t, N_tm = templates.shape
    if not numpy.iterable(n_temp):
        if square:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp**2]
        else:
            idx = numpy.random.permutation(numpy.arange(N_tm//2))[:n_temp]
    else:
        idx = n_temp

    import matplotlib.colors as colors
    my_cmap   = pylab.get_cmap('winter')
    cNorm     = colors.Normalize(vmin=0, vmax=N_e)
    scalarMap = pylab.cm.ScalarMappable(norm=cNorm, cmap=my_cmap)

    pylab.figure()
    for count, i in enumerate(idx):
        if square:
            pylab.subplot(n_temp, n_temp, count + 1)
            if (numpy.mod(count, n_temp) != 0):
                pylab.setp(pylab.gca(), yticks=[])
            if (count < n_temp*(n_temp - 1)):
                pylab.setp(pylab.gca(), xticks=[])
        else:
            pylab.subplot(len(idx), 1, count + 1)
            if count != (len(idx) - 1):
                pylab.setp(pylab.gca(), xticks=[])
        for j in xrange(N_e):
            colorVal = scalarMap.to_rgba(j)
            pylab.plot(templates[j, :, i], color=colorVal)

        pylab.title('Template %d' %i)
    pylab.tight_layout()
    pylab.show()
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_trigger_snippets(trigger_snippets, chans, save=None):
    # Create output directory if necessary.
    if os.path.exists(save):
        for f in os.listdir(save):
            p = os.path.join(save, f)
            os.remove(p)
        os.removedirs(save)
    os.makedirs(save)
    # Plot figures.
    fig = pylab.figure()
    for (c, chan) in enumerate(chans):
        ax = fig.add_subplot(1, 1, 1)
        for n in xrange(0, trigger_snippets.shape[2]):
            y = trigger_snippets[:, c, n]
            x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
            b = 0.5 + 0.5 * numpy.random.rand()
            ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
        y = numpy.mean(trigger_snippets[:, c, :], axis=1)
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        ax.plot(x, y, color=(1.0, 0.0, 0.0), linestyle='solid')
        ax.grid(True)
        ax.set_xlim([numpy.amin(x), numpy.amax(x)])
        ax.set_title("Channel %d" %chan)
        ax.set_xlabel("time")
        ax.set_ylabel("amplitude")
        if save is not None:
            # Save plot.
            filename = "channel-%d.png" %chan
            path = os.path.join(save, filename)
            pylab.savefig(path)
        fig.clf()
    if save is None:
        pylab.show()
    else:
        pylab.close(fig)
    return
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def view_mahalanobis_distribution(data_1, data_2, save=None):
    '''Plot Mahalanobis distribution Before and After'''
    fig = pylab.figure()
    ax = fig.add_subplot(1,2,1)
    if len(data_1) == 3:
        d_gt, d_ngt, d_noi = data_1
    elif len(data_1) == 2:
        d_gt, d_ngt = data_1
    if len(data_1) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("Before")
    ax.set_ylabel("")
    ax.set_xlabel('# Samples')
    ax.set_xlabel('Distances')

    if len(data_2) == 3:
        d_gt, d_ngt, d_noi = data_2
    elif len(data_2) == 2:
        d_gt, d_ngt = data_2
    ax = fig.add_subplot(1,2,2)
    if len(data_2) == 3:
        ax.hist(d_noi, bins=50, color='k', alpha=0.5, label="Noise")
    ax.hist(d_ngt, bins=50, color='b', alpha=0.5, label="Non GT")
    ax.hist(d_gt, bins=75, color='r', alpha=0.5, label="GT")
    ax.grid(True)
    ax.set_title("After")
    ax.set_ylabel("")
    ax.set_xlabel('Distances')


    ax.legend()
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return


问题


面经


文章

微信
公众号

扫码关注公众号