python类plot()的实例源码

frequency_estimator.py 文件源码 项目:NetPower_TestBed 作者: Vignesh2208 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def freq_from_HPS(sig, fs):
    """
    Estimate frequency using harmonic product spectrum (HPS)

    """
    windowed = sig * blackmanharris(len(sig))

    from pylab import subplot, plot, log, copy, show

    # harmonic product spectrum:
    c = abs(rfft(windowed))
    maxharms = 3
    #subplot(maxharms, 1, 1)
    #plot(log(c))
    for x in range(2, maxharms):
        a = copy(c[::x])  # Should average or maximum instead of decimating
        # max(c[::x],c[1::x],c[2::x],...)
        c = c[:len(a)]
        i = argmax(abs(c))
        true_i = parabolic(abs(c), i)[0]
        print 'Pass %d: %f Hz' % (x, fs * true_i / len(windowed))
        c *= a
        #subplot(maxharms, 1, x)
        #plot(log(c))
    #show()
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    for n in xrange(0, trigger_snippets.shape[2]):
        y = trigger_snippets[:, elec_index, n]
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        b = 0.5 + 0.5 * numpy.random.rand()
        ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
    ax.grid(True)
    ax.set_xlim([numpy.amin(x), numpy.amax(x)])
    ax.set_xlabel("time")
    ax.set_ylabel("amplitude")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
postprocessing_stance.py 文件源码 项目:seqhawkes 作者: mlukasik 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def display_results_figure(results, METRIC):
    import pylab as pb
    color = iter(pb.cm.rainbow(np.linspace(0, 1, len(results))))
    plots = []
    for method in results.keys():
        x = []
        y = []
        for train_perc in sorted(results[method].keys()):
            x.append(train_perc)
            y.append(results[method][train_perc][0])
        c = next(color)
        (pi, ) = pb.plot(x, y, color=c)
        plots.append(pi)
    from matplotlib.font_manager import FontProperties
    fontP = FontProperties()
    fontP.set_size('small')
    pb.legend(plots, map(method_name_mapper, results.keys()),
              prop=fontP, bbox_to_anchor=(0.6, .65))
    pb.xlabel('#Tweets from target rumour for training')
    pb.ylabel('Accuracy')
    pb.title(METRIC.__name__)
    pb.savefig('incrementing_training_size.png')
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def portfolio_timestamp_period_with_most_highly_corr_assets(self, df):
        # A first approximation to model portfolio returns:
        # i) Find assets that correlates with y, where correlation is higher than a threshold value
        # ii) Include only above assets and find maximum timestamp period with most assets
        # iii) Transform target value y to be cumulative mean of y in order to obtain monotonic behaviour
        # iv) Train model to predict transformed target value with the selected most correlated assets in selected
        # timestamp interval
        # v) Run model on test data and apply inverse transform to get target value y.

        # From plot it looks like a lot of assets are bought and sold at first and last timestamp.
        # We should of course primarily select assets based on how much they are correlated with y

        correlation_coeffecients = self.correlation_coeffecients
        names_of_assets = correlation_coeffecients.loc[correlation_coeffecients.index != 'y'].sort_values(
            ascending=False).head(self.number_of_assets_in_portfolio).index
        # Todo: make a check if any intermediate sales assets are among the most corr with y
        return df.loc[:, names_of_assets]
two_sigma_financial_modelling.py 文件源码 项目:PortfolioTimeSeriesAnalysis 作者: MizioAnd 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def predicted_vs_actual_y_xgb(self, xgb, best_nrounds, xgb_params, x_train_split, x_test_split, y_train_split,
                                  y_test_split, title_name):
        # Split the training data into an extra set of test
        # x_train_split, x_test_split, y_train_split, y_test_split = train_test_split(x_train, y_train)
        dtrain_split = xgb.DMatrix(x_train_split, label=y_train_split)
        dtest_split = xgb.DMatrix(x_test_split)
        print(np.shape(x_train_split), np.shape(x_test_split), np.shape(y_train_split), np.shape(y_test_split))
        gbdt = xgb.train(xgb_params, dtrain_split, best_nrounds)
        y_predicted = gbdt.predict(dtest_split)
        plt.figure(figsize=(10, 5))
        plt.scatter(y_test_split, y_predicted, s=20)
        rmse_pred_vs_actual = self.rmse(y_predicted, y_test_split)
        plt.title(''.join([title_name, ', Predicted vs. Actual.', ' rmse = ', str(rmse_pred_vs_actual)]))
        plt.xlabel('Actual y')
        plt.ylabel('Predicted y')
        plt.plot([min(y_test_split), max(y_test_split)], [min(y_test_split), max(y_test_split)])
        plt.tight_layout()
disp_mp3.py 文件源码 项目:audio_scripts 作者: audiofilter 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def display_wav(filename):
    input_data = read(filename)
    audio_in = input_data[1]
    samples = len(audio_in)
    fig = pylab.figure();
    print samples/44100.0," seconds"
    k = 0
    plot_data_out = []
    for i in xrange(samples):
        plot_data_out.append(audio_in[k]/32768.0)
        k = k+1
    pdata = numpy.array(plot_data_out, dtype=numpy.float)
    pylab.plot(pdata)
    pylab.grid(True)
    pylab.ion()
    pylab.show()
assess.py 文件源码 项目:ndparse 作者: neurodata 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def display_pr_curve(precision, recall):
    # following examples from sklearn

    # TODO:  f1 operating point

    import pylab as plt
    # Plot Precision-Recall curve
    plt.clf()
    plt.plot(recall, precision, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('Precision-Recall example: Max f1={0:0.2f}'.format(max_f1))
    plt.legend(loc="lower left")
    plt.show()
retrieve_band_structure.py 文件源码 项目:amset 作者: hackingmaterials 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def retrieve_bs(coeff_file, bs, ibands, cbm):
    # sp=bs.bands.keys()[0]
    engre, nwave, nsym, nstv, vec, vec2, out_vec2, br_dir = get_energy_args(coeff_file, ibands)

    #you can use a for loop along a certain list of k-points.
    for i, iband in enumerate(ibands):
        en = []
        sym_line_kpoints = [k.frac_coords for k in bs.kpoints]
        for kpt in sym_line_kpoints:
            e, v, m = get_energy(kpt, engre[i], nwave, nsym, nstv, vec, vec2=vec2, out_vec2=out_vec2, br_dir=br_dir, cbm=cbm)
            en.append(e*13.605)

        # plot(np.array(bs.bands[sp])[iband-1,:].T-bs.efermi) # from MP
        # plot(np.array(bs.bands[sp])[iband-2,:].T-bs.efermi) # from MP
        # plot(np.array(bs.bands[sp])[iband-3,:].T-bs.efermi) # from MP
        plot(en, color='b') # interpolated by BoltzTraP
    show()
astrom_intra.py 文件源码 项目:astromalign 作者: dstndstn 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def edgescatter(self, ps):
        for ei,X in enumerate(self.edges):
            i,j = X[:2]
            matchdRA, matchdDec = X[10:12]
            mu = X[9]
            A = self.alignments[ei]

            plt.clf()
            if len(matchdRA) > 1000:
                plothist(matchdRA, matchdDec, 101)
            else:
                plt.plot(matchdRA, matchdDec, 'k.', alpha=0.5)
            plt.axvline(0, color='0.5')
            plt.axhline(0, color='0.5')
            plt.axvline(mu[0], color='b')
            plt.axhline(mu[1], color='b')
            for nsig in [1,2]:
                X,Y = A.getContours(nsigma=nsig)
                plt.plot(X, Y, 'b-')
            plt.xlabel('delta-RA (arcsec)')
            plt.ylabel('delta-Dec (arcsec)')
            plt.axis('scaled')
            ps.savefig()
astrom_common.py 文件源码 项目:astromalign 作者: dstndstn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotaffine(aff, RR, DD, exag=1000, affineOnly=False, doclf=True, **kwargs):
    import pylab as plt
    if doclf:
        plt.clf()
    if affineOnly:
        dr,dd = aff.getAffineOffset(RR, DD)
    else:
        rr,dd = aff.apply(RR, DD)
        dr = rr - RR
        dd = dd - DD
    #plt.plot(RR, DD, 'r.')
    #plt.plot(RR + dr*exag, DD + dd*exag, 'bx')
    plt.quiver(RR, DD, exag*dr, exag*dd,
               angles='xy', scale_units='xy', scale=1,
               pivot='middle', color='b', **kwargs)
               #pivot='tail'
    ax = plt.axis()
    plt.plot([aff.getReferenceRa()], [aff.getReferenceDec()], 'r+', mew=2, ms=5)
    plt.axis(ax)
    esuf = ''
    if exag != 1.:
        esuf = ' (x %g)' % exag
    plt.title('Affine transformation found' + esuf)
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def PlotMultipleRuns(Alg, nruns=20, fname=None):
    '''Plot "nruns" runs of a given algorithm to show performance
    and variability across runs.'''
    if fname:
        runs = scipy.genfromtxt(fname)
    else:
        runs = []
        for i in range(nruns):
            bestSol, fitHistory = tsp.TSP(200, Alg, 3000, 30, seed=None,
                                          coordfile='tmp.txt')
            runs.append(fitHistory)
        fname = 'MultRuns-' + str(Alg) + '.txt'
        runs = scipy.array(runs)
        scipy.savetxt(fname, runs)

    # plotting
    Xs = scipy.linspace(0, runs.shape[1] * 1000, runs.shape[1])
    for i in range(runs.shape[0]):
        pl.plot(Xs, runs[i, :])
    pl.show()
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def LongMC3(fname=None):
    '''Plot a single long MC3 run to demonstrate high performance
    but slow convergence.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'MC3', 20000, 10, seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/MC3-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def LongSA(fname=None):
    '''Plot a single long SA run to demonstrate performance under slower
    cooling schedule.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'SA', 20000, 'placeholder', seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/SA-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
rectify.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def plot_rectified(self):
        import pylab
        pylab.title('rectified')
        pylab.imshow(self.rectified)

        for line in self.vlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
rectify.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def plot_original(self):
        import pylab
        pylab.title('original')
        pylab.imshow(self.data)

        for line in self.lines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)

        for line in self.vlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0)
megafacade.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _plot_background(self, bgimage):
        import pylab as pl
        # Show the portion of the image behind this facade
        left, right = self.facade_left, self.facade_right
        top, bottom = 0, self.mega_facade.rectified.shape[0]
        if bgimage is not None:
            pl.imshow(bgimage[top:bottom, left:right], extent=(left, right, bottom, top))
        else:
            # Fit the facade in the plot
            y0, y1 = pl.ylim()
            x0, x1 = pl.xlim()
            x0 = min(x0, left)
            x1 = max(x1, right)
            y0 = min(y0, top)
            y1 = max(y1, bottom)
            pl.xlim(x0, x1)
            pl.ylim(y1, y0)
vg.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def PlotProps(pars):
    import numpy as np
    import pylab as pl
    import vanGenuchten as vg
    psi = np.linspace(-10, 2, 200)
    pl.figure
    pl.subplot(3, 1, 1)
    pl.plot(psi, vg.thetaFun(psi, pars))
    pl.ylabel(r'$\theta(\psi) [-]$')
    pl.subplot(3, 1, 2)
    pl.plot(psi, vg.CFun(psi, pars))
    pl.ylabel(r'$C(\psi) [1/m]$')
    pl.subplot(3, 1, 3)
    pl.plot(psi, vg.KFun(psi, pars))
    pl.xlabel(r'$\psi [m]$')
    pl.ylabel(r'$K(\psi) [m/d]$')
    # pl.show()
experiment.py 文件源码 项目:double-dqn 作者: musyoku 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_evaluation_episode_reward():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    average_scores = [0]
    median_scores = [0]
    for n in xrange(len(csv_evaluation)):
        params = csv_evaluation[n]
        episodes.append(params[0])
        average_scores.append(params[1])
        median_scores.append(params[2])
    pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("average score")
    pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir)

    pylab.clf()
    pylab.plot(0, 0)
    pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("median score")
    pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
bayes.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def joint_density(X, Y, bounds=None):
    """
Plots joint distribution of variables.
Inherited from method in src/graphics.py module in project 
git://github.com/aflaxman/pymc-example-tfr-hdi.git
    """
    if bounds:
        X_min, X_max, Y_min, Y_max = bounds
    else:
        X_min = X.min()
        X_max = X.max()
        Y_min = Y.min()
        Y_max = Y.max()

    pylab.plot(X, Y, linestyle='none', marker='o', color='green', mec='green', alpha=.2, zorder=-99)

    gkde = scipy.stats.gaussian_kde([X, Y])
    x,y = pylab.mgrid[X_min:X_max:(X_max-X_min)/25.,Y_min:Y_max:(Y_max-Y_min)/25.]
    z = pylab.array(gkde.evaluate([x.flatten(), y.flatten()])).reshape(x.shape)
    pylab.contour(x, y, z, linewidths=2)

    pylab.axis([X_min, X_max, Y_min, Y_max])
dsp.py 文件源码 项目:nmmn 作者: rsnemmen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def error_resampler(errors):
    """
For use with ``pandas``.

Method for performing the proper ``mean`` resampling of the *uncertainties* (error bars) 
in the time series with ``pandas``. Note that doing a simple resampling 
will fail to propagate uncertainties, since error in the mean goes as 

.. math:: \sigma=\sqrt{\Sigma_n \sigma_n^2}

Example: Resamples the errors with 30 day averages:
::

    # df['errflux'] has the 1sigma uncertainties
    err=df['errflux'].resample('30d').apply(nmmn.dsp.error_resampler) 

    # plot y-values (df['flux']) with errors (err)
    df['flux'].resample('30d').mean().plot(yerr=err)
    """
    err=errors**2

    return numpy.sqrt(err.sum())/err.size
transfer_functions.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot(self, filename):
        r"""Save an image file of the transfer function.

        This function loads up matplotlib, plots the transfer function and saves.

        Parameters
        ----------
        filename : string
            The file to save out the plot as.

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.plot("sample.png")
        """
        import matplotlib
        matplotlib.use("Agg")
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.savefig(filename)
transfer_functions.py 文件源码 项目:yt 作者: yt-project 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def show(self):
        r"""Display an image of the transfer function

        This function loads up matplotlib and displays the current transfer function.

        Parameters
        ----------

        Examples
        --------

        >>> tf = TransferFunction( (-10.0, -5.0) )
        >>> tf.add_gaussian(-9.0, 0.01, 1.0)
        >>> tf.show()
        """
        import pylab
        pylab.clf()
        pylab.plot(self.x, self.y, 'xk-')
        pylab.xlim(*self.x_bounds)
        pylab.ylim(0.0, 1.0)
        pylab.draw()
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def fastLapModel(xList, labels, names, multiple=0, full_set=0):
    X = numpy.array(xList)
    y = numpy.array(labels)
    featureNames = []
    featureNames = numpy.array(names)
    # take fixed holdout set 30% of data rows
    xTrain, xTest, yTrain, yTest = train_test_split(
        X, y, test_size=0.30, random_state=531)
    # for final model (no CV)
    if full_set:
        xTrain = X
        yTrain = y
    check_set(xTrain, xTest, yTrain, yTest)
    print "Fitting the model to the data set..."
    # train random forest at a range of ensemble sizes in order to see how the
    # mse changes
    mseOos = []
    m = 10 ** multiple
    nTreeList = range(500 * m, 1000 * m, 100 * m)
    # iTrees = 10000
    for iTrees in nTreeList:
        depth = None
        maxFeat = int(np.sqrt(np.shape(xTrain)[1])) + 1  # try tweaking
        RFmd = ensemble.RandomForestRegressor(n_estimators=iTrees, max_depth=depth, max_features=maxFeat,
                                              oob_score=False, random_state=531, n_jobs=-1)
        # RFmd.n_features = 5
        RFmd.fit(xTrain, yTrain)

        # Accumulate mse on test set
        prediction = RFmd.predict(xTest)
        mseOos.append(mean_squared_error(yTest, prediction))
    # plot training and test errors vs number of trees in ensemble
    plot.plot(nTreeList, mseOos)
    plot.xlabel('Number of Trees in Ensemble')
    plot.ylabel('Mean Squared Error')
    #plot.ylim([0.0, 1.1*max(mseOob)])
    plot.show()
    print("MSE")
    print(mseOos[-1])
    return xTrain, xTest, yTrain, yTest, RFmd
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_importance(names, model, savefig=True):
    featureNames = numpy.array(names)
    featureImportance = model.feature_importances_
    featureImportance = featureImportance / featureImportance.max()
    sorted_idx = numpy.argsort(featureImportance)
    barPos = numpy.arange(sorted_idx.shape[0]) + .5
    plot.barh(barPos, featureImportance[sorted_idx], align='center')
    plot.yticks(barPos, featureNames[sorted_idx])
    plot.xlabel('Variable Importance')
    plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/featureImportance_" + dt_ + ".png")
    plot.show()


# Plot prediction save the graph with a timestamp
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_pred(y_predicted, y, savefig=True):
    # y_predicted.reset_index(drop=1, inplace=1)
    index = np.argsort(y)
    y = y[index]
    # y.shape
    yhat = y_predicted[index]
    yy = pd.DataFrame([y, yhat])
    if yy.shape[1] > yy.shape[0]:
        yy = yy.T
    yy.reset_index(drop=0, inplace=1)
    plt.scatter(yy.index, yy[1], s=.4)
    plt.plot(yy.index, yy[0], ls='-', color='red', linewidth=.5)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/" + dt_ + ".png")
    plt.show()


# Check the data before regression (no Na, size, etc)
imgSignal.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def backgroundPeakValue(img, bins=500):
    f = FitHistogramPeaks(img, bins=bins, bins2=300)

    bgp = getBackgroundPeak(f.fitParams)
    ind = int(bgp[1])
    if ind < 0:
        ind = 0
#     y = f.yvals[ind:]
#     i = np.argmax(np.diff(y) > 0)
#     bgmaxpos = ind  # + i
#     print(f.xvals[bgmaxpos], bgmaxpos)
#     import pylab as plt
#     plt.plot(f.xvals, f.yvals)
#     plt.show()

    return f.xvals[ind]


问题


面经


文章

微信
公众号

扫码关注公众号