python类show()的实例源码

frequency_estimator.py 文件源码 项目:NetPower_TestBed 作者: Vignesh2208 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def freq_from_HPS(sig, fs):
    """
    Estimate frequency using harmonic product spectrum (HPS)

    """
    windowed = sig * blackmanharris(len(sig))

    from pylab import subplot, plot, log, copy, show

    # harmonic product spectrum:
    c = abs(rfft(windowed))
    maxharms = 3
    #subplot(maxharms, 1, 1)
    #plot(log(c))
    for x in range(2, maxharms):
        a = copy(c[::x])  # Should average or maximum instead of decimating
        # max(c[::x],c[1::x],c[2::x],...)
        c = c[:len(a)]
        i = argmax(abs(c))
        true_i = parabolic(abs(c), i)[0]
        print 'Pass %d: %f Hz' % (x, fs * true_i / len(windowed))
        c *= a
        #subplot(maxharms, 1, x)
        #plot(log(c))
    #show()
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def view_trigger_snippets_bis(trigger_snippets, elec_index, save=None):
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    for n in xrange(0, trigger_snippets.shape[2]):
        y = trigger_snippets[:, elec_index, n]
        x = numpy.arange(- (y.size - 1) / 2, (y.size - 1) / 2 + 1)
        b = 0.5 + 0.5 * numpy.random.rand()
        ax.plot(x, y, color=(0.0, 0.0, b), linestyle='solid')
    ax.grid(True)
    ax.set_xlim([numpy.amin(x), numpy.amax(x)])
    ax.set_xlabel("time")
    ax.set_ylabel("amplitude")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_dataset(X, color='blue', title=None, save=None):
    n_components = 2
    pca = PCA(n_components)
    pca.fit(X)
    x = pca.transform(X)
    fig = pylab.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x[:, 0], x[:, 1], c=color, s=5, lw=0.1)
    ax.grid(True)
    if title is None:
        ax.set_title("Dataset ({} samples)".format(X.shape[0]))
    else:
        ax.set_title(title + " ({} samples)".format(X.shape[0]))
    ax.set_xlabel("1st component")
    ax.set_ylabel("2nd component")
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
plot.py 文件源码 项目:spyking-circus 作者: spyking-circus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def view_loss_curve(losss, title=None, save=None):
    '''Plot loss curve'''
    x_min = 1
    x_max = len(losss) - 1
    fig = pylab.figure()
    ax = fig.gca()
    ax.semilogy(range(x_min, x_max + 1), losss[1:], color='blue', linestyle='solid')
    ax.grid(True, which='both')
    if title is None:
        ax.set_title("Loss curve")
    else:
        ax.set_title(title)
    ax.set_xlabel("iteration")
    ax.set_ylabel("loss")
    ax.set_xlim([x_min - 1, x_max + 1])
    if save is None:
        pylab.show()
    else:
        pylab.savefig(save)
        pylab.close(fig)
    return
disp_mp3.py 文件源码 项目:audio_scripts 作者: audiofilter 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def display_wav(filename):
    input_data = read(filename)
    audio_in = input_data[1]
    samples = len(audio_in)
    fig = pylab.figure();
    print samples/44100.0," seconds"
    k = 0
    plot_data_out = []
    for i in xrange(samples):
        plot_data_out.append(audio_in[k]/32768.0)
        k = k+1
    pdata = numpy.array(plot_data_out, dtype=numpy.float)
    pylab.plot(pdata)
    pylab.grid(True)
    pylab.ion()
    pylab.show()
assess.py 文件源码 项目:ndparse 作者: neurodata 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def display_pr_curve(precision, recall):
    # following examples from sklearn

    # TODO:  f1 operating point

    import pylab as plt
    # Plot Precision-Recall curve
    plt.clf()
    plt.plot(recall, precision, label='Precision-Recall curve')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([0.0, 1.05])
    plt.xlim([0.0, 1.0])
    plt.title('Precision-Recall example: Max f1={0:0.2f}'.format(max_f1))
    plt.legend(loc="lower left")
    plt.show()
docompare.py 文件源码 项目:office-interoperability-tools 作者: milossramek 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def disp(iimg, label = "", gray=False):
    """ Display an image using pylab
    """
    try:
        import pylab
        dimage = iimg.copy()
        if iimg.ndim==3:
            dimage[...,0] = iimg[...,2]
            dimage[...,2] = iimg[...,0]

        pylab.imshow(dimage, interpolation='none')
        if gray: pylab.gray()
        #pylab.gca().format_coord = format_coord
        pylab.text(1500, -30, label)
        pylab.axis('off')
        pylab.show()
    except ImportError:
        print "Module pylab not available"
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def PlotMultipleRuns(Alg, nruns=20, fname=None):
    '''Plot "nruns" runs of a given algorithm to show performance
    and variability across runs.'''
    if fname:
        runs = scipy.genfromtxt(fname)
    else:
        runs = []
        for i in range(nruns):
            bestSol, fitHistory = tsp.TSP(200, Alg, 3000, 30, seed=None,
                                          coordfile='tmp.txt')
            runs.append(fitHistory)
        fname = 'MultRuns-' + str(Alg) + '.txt'
        runs = scipy.array(runs)
        scipy.savetxt(fname, runs)

    # plotting
    Xs = scipy.linspace(0, runs.shape[1] * 1000, runs.shape[1])
    for i in range(runs.shape[0]):
        pl.plot(Xs, runs[i, :])
    pl.show()
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def LongMC3(fname=None):
    '''Plot a single long MC3 run to demonstrate high performance
    but slow convergence.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'MC3', 20000, 10, seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/MC3-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
Visualizations.py 文件源码 项目:GoodEnoughAlgs 作者: elsander 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def LongSA(fname=None):
    '''Plot a single long SA run to demonstrate performance under slower
    cooling schedule.'''
    if fname:
        run = scipy.genfromtxt(fname)
    else:
        bestSol, run = tsp.TSP(200, 'SA', 20000, 'placeholder', seed=None,
                               coordfile='tmp.txt')
        fname = 'ExampleOutput/SA-Long.txt'
        run = scipy.array(run)
        scipy.savetxt(fname, run)

    # plotting
    Xs = range(0, run.shape[0] * 1000, 1000)
    pl.plot(Xs, run)
    pl.show()
vg.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def PlotProps(pars):
    import numpy as np
    import pylab as pl
    import vanGenuchten as vg
    psi = np.linspace(-10, 2, 200)
    pl.figure
    pl.subplot(3, 1, 1)
    pl.plot(psi, vg.thetaFun(psi, pars))
    pl.ylabel(r'$\theta(\psi) [-]$')
    pl.subplot(3, 1, 2)
    pl.plot(psi, vg.CFun(psi, pars))
    pl.ylabel(r'$C(\psi) [1/m]$')
    pl.subplot(3, 1, 3)
    pl.plot(psi, vg.KFun(psi, pars))
    pl.xlabel(r'$\psi [m]$')
    pl.ylabel(r'$K(\psi) [m/d]$')
    # pl.show()
sample_convnade.py 文件源码 项目:NADE 作者: MarcCote 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def buildArgsParser():
    DESCRIPTION = "Generate samples from a Conv Deep NADE model."
    p = argparse.ArgumentParser(description=DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    p.add_argument('experiment', type=str, help='folder where to find a trained ConvDeepNADE model')
    p.add_argument('count', type=int, help='number of samples to generate.')
    p.add_argument('--out', type=str, help='name of the samples file')

    # General parameters (optional)
    p.add_argument('--seed', type=int, help='seed used to generate random numbers. Default: 1234', default=1234)
    p.add_argument('--view', action='store_true', help="show samples.")

    p.add_argument('-v', '--verbose', action='store_true', help='produce verbose output')
    p.add_argument('-f', '--force',  action='store_true', help='permit overwriting')

    return p
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotPopScore(population, fitness=False):
   """ Plot the population score distribution

   Example:
      >>> Interaction.plotPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   pylab.plot(score_list, 'o')
   pylab.title("Plot of population score distribution")
   pylab.xlabel('Individual')
   pylab.ylabel('Score')
   pylab.grid(True)
   pylab.show()

# -----------------------------------------------------------------
Interaction.py 文件源码 项目:CAAPR 作者: Stargrazer82301 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plotHistPopScore(population, fitness=False):
   """ Population score distribution histogram

   Example:
      >>> Interaction.plotHistPopScore(population)

   :param population: population object (:class:`GPopulation.GPopulation`)
   :param fitness: if True, the fitness score will be used, otherwise, the raw.
   :rtype: None

   """
   score_list = getPopScores(population, fitness)
   n, bins, patches = pylab.hist(score_list, 50, facecolor='green', alpha=0.75, normed=1)
   pylab.plot(bins, pylab.normpdf(bins, numpy.mean(score_list), numpy.std(score_list)), 'r--')
   pylab.xlabel('Score')
   pylab.ylabel('Frequency')
   pylab.grid(True)
   pylab.title("Plot of population score distribution")
   pylab.show()

# -----------------------------------------------------------------
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def fastLapModel(xList, labels, names, multiple=0, full_set=0):
    X = numpy.array(xList)
    y = numpy.array(labels)
    featureNames = []
    featureNames = numpy.array(names)
    # take fixed holdout set 30% of data rows
    xTrain, xTest, yTrain, yTest = train_test_split(
        X, y, test_size=0.30, random_state=531)
    # for final model (no CV)
    if full_set:
        xTrain = X
        yTrain = y
    check_set(xTrain, xTest, yTrain, yTest)
    print "Fitting the model to the data set..."
    # train random forest at a range of ensemble sizes in order to see how the
    # mse changes
    mseOos = []
    m = 10 ** multiple
    nTreeList = range(500 * m, 1000 * m, 100 * m)
    # iTrees = 10000
    for iTrees in nTreeList:
        depth = None
        maxFeat = int(np.sqrt(np.shape(xTrain)[1])) + 1  # try tweaking
        RFmd = ensemble.RandomForestRegressor(n_estimators=iTrees, max_depth=depth, max_features=maxFeat,
                                              oob_score=False, random_state=531, n_jobs=-1)
        # RFmd.n_features = 5
        RFmd.fit(xTrain, yTrain)

        # Accumulate mse on test set
        prediction = RFmd.predict(xTest)
        mseOos.append(mean_squared_error(yTest, prediction))
    # plot training and test errors vs number of trees in ensemble
    plot.plot(nTreeList, mseOos)
    plot.xlabel('Number of Trees in Ensemble')
    plot.ylabel('Mean Squared Error')
    #plot.ylim([0.0, 1.1*max(mseOob)])
    plot.show()
    print("MSE")
    print(mseOos[-1])
    return xTrain, xTest, yTrain, yTest, RFmd
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_importance(names, model, savefig=True):
    featureNames = numpy.array(names)
    featureImportance = model.feature_importances_
    featureImportance = featureImportance / featureImportance.max()
    sorted_idx = numpy.argsort(featureImportance)
    barPos = numpy.arange(sorted_idx.shape[0]) + .5
    plot.barh(barPos, featureImportance[sorted_idx], align='center')
    plot.yticks(barPos, featureNames[sorted_idx])
    plot.xlabel('Variable Importance')
    plot.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.1)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/featureImportance_" + dt_ + ".png")
    plot.show()


# Plot prediction save the graph with a timestamp
RFfastestLap.py 文件源码 项目:f1_2017 作者: aflaisler 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_pred(y_predicted, y, savefig=True):
    # y_predicted.reset_index(drop=1, inplace=1)
    index = np.argsort(y)
    y = y[index]
    # y.shape
    yhat = y_predicted[index]
    yy = pd.DataFrame([y, yhat])
    if yy.shape[1] > yy.shape[0]:
        yy = yy.T
    yy.reset_index(drop=0, inplace=1)
    plt.scatter(yy.index, yy[1], s=.4)
    plt.plot(yy.index, yy[0], ls='-', color='red', linewidth=.5)
    if savefig:
        dt_ = datetime.datetime.now().strftime('%d%b%y_%H%M')
        plt.savefig("../graphs/" + dt_ + ".png")
    plt.show()


# Check the data before regression (no Na, size, etc)
imgSignal.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def backgroundPeakValue(img, bins=500):
    f = FitHistogramPeaks(img, bins=bins, bins2=300)

    bgp = getBackgroundPeak(f.fitParams)
    ind = int(bgp[1])
    if ind < 0:
        ind = 0
#     y = f.yvals[ind:]
#     i = np.argmax(np.diff(y) > 0)
#     bgmaxpos = ind  # + i
#     print(f.xvals[bgmaxpos], bgmaxpos)
#     import pylab as plt
#     plt.plot(f.xvals, f.yvals)
#     plt.show()

    return f.xvals[ind]
_TEST_interpolate2dDiffusion.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def interpolate2dDiffusion(arr1, arr2, steps=10, diffusivity=0.2):

    psf = np.zeros((5, 5))
    numbaGaussian2d(psf, 1, 1)
#     plt.imshow(psf)
#     plt.show()
    last = arr1

    out = []
    for s in range(steps):
        next = np.zeros_like(arr1)
        diff = diffusivity * (last - arr2)
#         plt.imshow(diff)
#         plt.show()
        weightedConvolution(last, next, diff, psf)

        out.append(next)
        last = next
    return out
vignettingFromDiscreteSteps.py 文件源码 项目:imgProcessor 作者: radjkarl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _visualize(grid, device, img, gen):
    # for debugging:
    # show intermediate steps of iteration
    # in [vignettingDiscreteSteps]
    import pylab as plt
    fig, ax = plt.subplots(1, 3)
    ax[0].set_title('device')
    ax[0].imshow(device, interpolation='none')
    ax[1].set_title('average')
    ax[1].imshow(grid, interpolation='none')
    ax[2].set_title('grid')
    im = ax[2].imshow(img, interpolation='none')
    for x, y in gen:
        ax[2].plot(x, y)
    fig.colorbar(im)
    plt.show()
models_actinf.py 文件源码 项目:smp_base 作者: x75 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def generate_inverted_sinewave_dataset(N = 1000, f = 1.0, p = 0.0, a1 = 1.0, a2 = 0.3):
    """models_actinf.generate_inverted_sinewave_dataset

    Generate the inverted sine dataset used in Bishop's (Bishop96)
    mixture density paper

    Returns:
    - matrices X, Y
    """
    X = np.linspace(0,1,N)
    # FIXME: include phase p
    Y = a1 * X + a2 * np.sin(f * (2 * 3.1415926) * X) + np.random.uniform(-0.1, 0.1, N)
    X,Y = Y[:,np.newaxis],X[:,np.newaxis]

    # pl.subplot(211)
    # pl.plot(Y, X, "ko", alpha=0.25)
    # pl.subplot(212)
    # pl.plot(X, Y, "ko", alpha=0.25)
    # pl.show()

    return X,Y
ngamsPlotDataAccess.py 文件源码 项目:ngas 作者: ICRAR 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_success_functions():
    data_dir = "/Users/Chen/data/ngas_logs"
    lru_yd = np.load("{0}/{1}".format(data_dir, 'yd_lru_ingest_correct.npy'))
    lfu_yd = np.load("{0}/{1}".format(data_dir, 'yd_lfu_ingest_correct.npy'))
    liat_yd = np.load("{0}/{1}".format(data_dir, 'yd_liat_ingest_correct.npy'))
    lrud_yd = np.load("{0}/{1}".format(data_dir, 'yd_lrud_ingest_correct.npy'))
    lnr_yd = np.load("{0}/{1}".format(data_dir, 'yd_lnr_ingest_correct.npy'))
    law_yd = np.load("{0}/{1}".format(data_dir, 'yd_law_ingest_correct.npy'))
    #liat_yd_imiat = np.load("{0}/{1}".format(data_dir, 'yd_liat_ingest_max_iat.npy'))
    ax1 = plot_success_function(lru_yd, label='Least Recently Used', show=False)
    #plot_success_function(lru_yd, label='LRU - default on disk', line='--', show=False, init_on_tape=False, ax=ax1)
    plot_success_function(lfu_yd, label='Least Frequently Used', line='--', lcolor='skyblue', show=False, ax=ax1)
    #plot_success_function(lfu_yd, label='LFU - default on disk', lcolor='r', line='--', init_on_tape=False, show=False, ax=ax1)
    plot_success_function(liat_yd, label='Longest Inter-Arrival Time', line=':', lcolor='darkorchid', show=False, ax=ax1)
    plot_success_function(law_yd, label='Largest Age Weight (DMF)', line='-', lcolor='k', show=False, ax=ax1)
    #plot_success_function(liat_yd, label='LIAT - default on disk', lcolor='g', line='--', init_on_tape=False, ax=ax1)
    #plot_success_function(liat_yd_imiat, label='LIAT - ingest max iat', lcolor='g', line='-.', ax=ax1)
    plot_success_function(lnr_yd, label='Longest Next Access (Optimal)', line='--', lcolor='deeppink', show=False, ax=ax1, lw=3.0)
    plot_ws_success_function(lru_yd, ax=ax1, lw=3.0)
    plot_success_function(lrud_yd, label='Longest Reuse Distance', line='-.', lcolor='lime', show=True, ax=ax1, lw=4.0)
tp3_solutions.py 文件源码 项目:TPs 作者: DataMiningP7 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ex2():
    x = np.linspace(-10, 10)

    # "--" = dashed line
    plt.plot(x, np.sin(x), "--", label="sinus")
    plt.plot(x, np.cos(x), label="cosinus")

    # Show the legend using the labels above
    plt.legend()

    # The trick here is we have to make another plot on top of the two others.
    pi2 = np.pi/2

    # Find B such that (-B * pi/2) >= -10 > ((-B-1) * pi/2), i.e. the
    # first multiple of pi/2 higher than -10.
    b = pi2*int(-10.0/pi2)

    # x2 is all multiples of pi/2 between -10 and 10.
    x2 = np.arange(b, 10, pi2)

    # "b." = blue dots
    plt.plot(x2, np.sin(x2), "b.")
    plt.show()
vim-profiler.py 文件源码 项目:dotfiles 作者: zchee 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot(self):
        """
        Plot startup data.
        """
        import pylab

        print("Plotting result...", end="")
        avg_data = self.average_data()
        avg_data = self.__sort_data(avg_data, False)
        if len(self.raw_data) > 1:
            err = self.stdev_data()
            sorted_err = [err[k] for k in list(zip(*avg_data))[0]]
        else:
            sorted_err = None
        pylab.barh(range(len(avg_data)), list(zip(*avg_data))[1],
                   xerr=sorted_err, align='center', alpha=0.4)
        pylab.yticks(range(len(avg_data)), list(zip(*avg_data))[0])
        pylab.xlabel("Average startup time (ms)")
        pylab.ylabel("Plugins")
        pylab.show()
        print(" done.")
recognition.py 文件源码 项目:Captcha-recognition-TF 作者: dukn 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def view_(_pred,_lable):

    fname = ['Captcha/lv3/%i.jpg' %i for i in range(20)]
    img = []
    for fn in fname:
        img.append(Image.open(open(fn)))
        #img.append(misc.imread(fn).astype(np.float))
    for i in range(len(img)):
        pylab.subplot(4,5,i+1); pylab.axis('off')

        pylab.imshow(img[i])
        #pylab.imshow( np.dot(np.array(img[i])[...,:3],[0.299,0.587,0.114]) , cmap=plt.get_cmap("gray"))
        #pylab.text(40,60,_pred[i],color = 'b')
        if ( _pred[i] == _lable[i] ):
            pylab.text(40,65,_pred[i],color = 'b',size = 15)
        else:
            pylab.text(40,65,_pred[i],color = 'r',size = 15)

        pylab.text(40,92,_lable[i],color = 'g',size = 15)

    pylab.show()
7 code plus.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def show(self):
#        pl.semilogy(self.theta, self.omega)
#                , label = '$L =%.1f m, $'%self.l + '$dt = %.2f s, $'%self.dt + '$\\theta_0 = %.2f radians, $'%self.theta[0] + '$q = %i, $'%self.q + '$F_D = %.2f, $'%self.F_D + '$\\Omega_D = %.1f$'%self.Omega_D)
        pl.plot(self.theta_phase ,self.omega_phase, '.', label = '$t \\approx 2\\pi n / \\Omega_D$')
        pl.xlabel('$\\theta$ (radians)')
        pl.ylabel('$\\omega$ (radians/s)')
        pl.legend()
#        pl.text(-1.4, 0.3, '$\\omega$ versus $\\theta$ $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
#        pl.show()
#        pl.semilogy(self.time_array, self.delta)
#        pl.legend(loc = 'upper center', fontsize = 'small')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta (radians)$')
#        pl.xlim(0, self.T)
#        pl.ylim(float(input('ylim-: ')),float(input('ylim+: ')))
#        pl.ylim(1E-11, 0.01)
#        pl.text(4, -0.15, 'nonlinear pendulum - Euler-Cromer method')
#        pl.text(10, 1E-3, '$\\Delta\\theta versus time F_D = 0.5$')
#        pl.title('Simple Harmonic Motion')
        pl.title('Chaotic Regime')
7 code plus.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def show_log(self):
#        pl.subplot(121)
        pl.semilogy(self.time_array, self.delta, 'c')
        pl.xlabel('$time (s)$')
        pl.ylabel('$\\Delta\\theta$ (radians)')
        pl.xlim(0, self.T)
#        pl.ylim(1E-11, 0.01)
        pl.text(42, 1E-7, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
        pl.title('Chaotic Regime')
        pl.show()

#    def show_log_sub122(self):
#        pl.subplot(122)
#        pl.semilogy(self.time_array, self.delta, 'g')
#        pl.xlabel('$time (s)$')
#        pl.ylabel('$\\Delta\\theta$ (radians)')
#        pl.xlim(0, self.T)
#        pl.ylim(1E-6, 100)
#        pl.text(20, 1E-5, '$\\Delta\\theta$ versus time $F_D = 1.2$', fontsize = 'x-large')
#        pl.title('Chaotic Regime')
#        pl.show()
7 code plus.py 文件源码 项目:computational_physics_N2014301020117 作者: yukangnineteen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def multi_show(self):
        for i in range(2):
            a = simple_harmonic_motion(time_step = float(input('time step: ')), time_duration = float(input('time duration: ')), initial_theta = float(input('initial theta: ')), length = float(input('length: ')), strength_of_damping = float(input('stength of damping: ')), amplitude = float(input('amplitude of driving force: ')), anguluar_frequency = float(input('angular frequency of driving force: ')))
            a.calculate()
            a.show()
        pl.show()




#class please_input():
#        string_input = input('xlocation ,ylocation: ')
#        numbers = [float(n) for n in string_input.split()]        
#        x = numbers[0]
#        y = numbers[1]



#b = simple_harmonic_motion()
#b.calculate_delta()
#b.show()


问题


面经


文章

微信
公众号

扫码关注公众号