def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
python类SOCKET_TIMEOUT的实例源码
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
curl_httpclient.py 文件源码
项目:My-Web-Server-Framework-With-Python2.7
作者: syjsu
项目源码
文件源码
阅读 14
收藏 0
点赞 0
评论 0
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error, e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout != -1:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except Exception, e:
ret = e[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout != -1:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error, e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout != -1:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout != -1:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)
def _handle_timeout(self):
"""Called by IOLoop when the requested timeout has passed."""
with stack_context.NullContext():
self._timeout = None
while True:
try:
ret, num_handles = self._multi.socket_action(
pycurl.SOCKET_TIMEOUT, 0)
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests()
# In theory, we shouldn't have to do this because curl will
# call _set_timeout whenever the timeout changes. However,
# sometimes after _handle_timeout we will need to reschedule
# immediately even though nothing has changed from curl's
# perspective. This is because when socket_action is
# called with SOCKET_TIMEOUT, libcurl decides internally which
# timeouts need to be processed by using a monotonic clock
# (where available) while tornado uses python's time.time()
# to decide when timeouts have occurred. When those clocks
# disagree on elapsed time (as they will whenever there is an
# NTP adjustment), tornado might call _handle_timeout before
# libcurl is ready. After each timeout, resync the scheduled
# timeout with libcurl's current state.
new_timeout = self._multi.timeout()
if new_timeout >= 0:
self._set_timeout(new_timeout)