python类COCO的实例源码

coco.py 文件源码 项目:Faster-RCNN_TF 作者: smallcorgi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
        ann_type = 'bbox'
        coco_dt = self._COCO.loadRes(res_file)
        coco_eval = COCOeval(self._COCO, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        self._print_detection_eval_metrics(coco_eval)
        eval_file = osp.join(output_dir, 'detection_results.pkl')
        with open(eval_file, 'wb') as fid:
            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
        print 'Wrote COCO eval results to: {}'.format(eval_file)
coco.py 文件源码 项目:tf-faster-rcnn 作者: endernewton 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
    imdb.__init__(self, 'coco_' + year + '_' + image_set)
    # COCO specific config options
    self.config = {'use_salt': True,
                   'cleanup': True}
    # name, paths
    self._year = year
    self._image_set = image_set
    self._data_path = osp.join(cfg.DATA_DIR, 'coco')
    # load COCO API, classes, class <-> id mappings
    self._COCO = COCO(self._get_ann_file())
    cats = self._COCO.loadCats(self._COCO.getCatIds())
    self._classes = tuple(['__background__'] + [c['name'] for c in cats])
    self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
    self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats],
                                               self._COCO.getCatIds())))
    self._image_index = self._load_image_set_index()
    # Default to roidb handler
    self.set_proposal_method('gt')
    self.competition_mode(False)

    # Some image sets are "views" (i.e. subsets) into others.
    # For example, minival2014 is a random 5000 image subset of val2014.
    # This mapping tells us where the view's images and proposals come from.
    self._view_map = {
      'minival2014': 'val2014',  # 5k val2014 subset
      'valminusminival2014': 'val2014',  # val2014 \setminus minival2014
      'test-dev2015': 'test2015',
    }
    coco_name = image_set + year  # e.g., "val2014"
    self._data_name = (self._view_map[coco_name]
                       if coco_name in self._view_map
                       else coco_name)
    # Dataset splits that have ground-truth annotations (test splits
    # do not have gt annotations)
    self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:tf-faster-rcnn 作者: endernewton 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
    ann_type = 'bbox'
    coco_dt = self._COCO.loadRes(res_file)
    coco_eval = COCOeval(self._COCO, coco_dt)
    coco_eval.params.useSegm = (ann_type == 'segm')
    coco_eval.evaluate()
    coco_eval.accumulate()
    self._print_detection_eval_metrics(coco_eval)
    eval_file = osp.join(output_dir, 'detection_results.pkl')
    with open(eval_file, 'wb') as fid:
      pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL)
    print('Wrote COCO eval results to: {}'.format(eval_file))
CocoUtils.py 文件源码 项目:NNProject_DeepMask 作者: abbypa 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, data_dir, data_type):
        ann_file = '%s/annotations/instances_%s.json' % (data_dir, data_type)
        # initialize COCO api for instance annotations
        self.coco = COCO(ann_file)
coco.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
        ann_type = 'bbox'
        coco_dt = self._COCO.loadRes(res_file)
        coco_eval = COCOeval(self._COCO, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        self._print_detection_eval_metrics(coco_eval)
        eval_file = osp.join(output_dir, 'detection_results.pkl')
        with open(eval_file, 'wb') as fid:
            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
        print 'Wrote COCO eval results to: {}'.format(eval_file)
coco_dataset.py 文件源码 项目:DeepMIML 作者: kingfengji 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, data_dir, image_set, year):
        self.name = 'coco_' + year + '_' + image_set
        # name, paths
        self.year = year
        self.image_set = image_set
        self.data_dir = data_dir

        # COCO API
        self.COCO = COCO(self._get_ann_file())
        cats = self.COCO.loadCats(self.COCO.getCatIds())
        self.classes = tuple([c['name'] for c in cats])
        self.num_classes = len(self.classes)
        # e.g: 'person' -> 0, 'toothbrush' -> 79
        self.class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        # e.g: 'person' -> 1, 'toothbrush' -> 90
        self.class_to_coco_cat_id = dict(zip([c['name'] for c in cats], self.COCO.getCatIds()))
        # coco' cat_id (1,,90) -> label_id (0,,79)
        self.coco_cat_id_to_class_ind = dict([(self.class_to_coco_cat_id[cls],
                                          self.class_to_ind[cls])
                                         for cls in self.classes])

        self.image_index = self._load_image_set_index()
        self.num_images = len(self.image_index)

        coco_name = image_set + year  # e.g., "val2014"
        self.data_name = coco_name
coco_dataset.py 文件源码 项目:DeepMIML 作者: kingfengji 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _load_image_set_index(self):
        """
        Load image ids.
        """
        image_ids = self.COCO.getImgIds()
        return image_ids
coco_dataset.py 文件源码 项目:DeepMIML 作者: kingfengji 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def image_path_from_index(self, index):
        """
        Construct an image path from the image's "index" identifier.
        """
        # Example image path for index=119993:
        #   train2014/COCO_train2014_000000119993.jpg
        image = self.COCO.loadImgs(index)[0]
        image_path = osp.join(self.data_dir, self.data_name, image['file_name'])
        assert osp.exists(image_path), 'Path does not exist: {}'.format(image_path)
        return image_path
coco_dataset.py 文件源码 项目:DeepMIML 作者: kingfengji 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _load_coco_annotation(self, index):
        annIds = self.COCO.getAnnIds(imgIds=index, iscrowd=None)
        objs = self.COCO.loadAnns(annIds)
        bag_labels = np.zeros(self.num_classes)
        for obj in objs:
            cls = self.coco_cat_id_to_class_ind[obj['category_id']]
            bag_labels[cls] = 1
        return bag_labels
coco.py 文件源码 项目:FastRcnnDetect 作者: karthkk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:FastRcnnDetect 作者: karthkk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
        ann_type = 'bbox'
        coco_dt = self._COCO.loadRes(res_file)
        coco_eval = COCOeval(self._COCO, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        self._print_detection_eval_metrics(coco_eval)
        eval_file = osp.join(output_dir, 'detection_results.pkl')
        with open(eval_file, 'wb') as fid:
            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
        print 'Wrote COCO eval results to: {}'.format(eval_file)
coco.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
        ann_type = 'bbox'
        coco_dt = self._COCO.loadRes(res_file)
        coco_eval = COCOeval(self._COCO, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        self._print_detection_eval_metrics(coco_eval)
        eval_file = osp.join(output_dir, 'detection_results.pkl')
        with open(eval_file, 'wb') as fid:
            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
        print 'Wrote COCO eval results to: {}'.format(eval_file)
eval_utils.py 文件源码 项目:self-critical.pytorch 作者: ruotianluo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def language_eval(dataset, preds, model_id, split):
    import sys
    sys.path.append("coco-caption")
    annFile = 'coco-caption/annotations/captions_val2014.json'
    from pycocotools.coco import COCO
    from pycocoevalcap.eval import COCOEvalCap

    encoder.FLOAT_REPR = lambda o: format(o, '.3f')

    if not os.path.isdir('eval_results'):
        os.mkdir('eval_results')
    cache_path = os.path.join('eval_results/', model_id + '_' + split + '.json')

    coco = COCO(annFile)
    valids = coco.getImgIds()

    # filter results to only those in MSCOCO validation set (will be about a third)
    preds_filt = [p for p in preds if p['image_id'] in valids]
    print('using %d/%d predictions' % (len(preds_filt), len(preds)))
    json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...

    cocoRes = coco.loadRes(cache_path)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.params['image_id'] = cocoRes.getImgIds()
    cocoEval.evaluate()

    # create output dictionary
    out = {}
    for metric, score in cocoEval.eval.items():
        out[metric] = score

    imgToEval = cocoEval.imgToEval
    for p in preds_filt:
        image_id, caption = p['image_id'], p['caption']
        imgToEval[image_id]['caption'] = caption
    with open(cache_path, 'w') as outfile:
        json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)

    return out
coco.py 文件源码 项目:nexar-2 作者: lbin 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
    imdb.__init__(self, 'coco_' + year + '_' + image_set)
    # COCO specific config options
    self.config = {'use_salt': True,
                   'cleanup': True}
    # name, paths
    self._year = year
    self._image_set = image_set
    self._data_path = osp.join(cfg.DATA_DIR, 'coco')
    # load COCO API, classes, class <-> id mappings
    self._COCO = COCO(self._get_ann_file())
    cats = self._COCO.loadCats(self._COCO.getCatIds())
    self._classes = tuple(['__background__'] + [c['name'] for c in cats])
    self._class_to_ind = dict(list(zip(self.classes, list(range(self.num_classes)))))
    self._class_to_coco_cat_id = dict(list(zip([c['name'] for c in cats],
                                               self._COCO.getCatIds())))
    self._image_index = self._load_image_set_index()
    # Default to roidb handler
    self.set_proposal_method('gt')
    self.competition_mode(False)

    # Some image sets are "views" (i.e. subsets) into others.
    # For example, minival2014 is a random 5000 image subset of val2014.
    # This mapping tells us where the view's images and proposals come from.
    self._view_map = {
      'minival2014': 'val2014',  # 5k val2014 subset
      'valminusminival2014': 'val2014',  # val2014 \setminus minival2014
      'test-dev2015': 'test2015',
    }
    coco_name = image_set + year  # e.g., "val2014"
    self._data_name = (self._view_map[coco_name]
                       if coco_name in self._view_map
                       else coco_name)
    # Dataset splits that have ground-truth annotations (test splits
    # do not have gt annotations)
    self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:nexar-2 作者: lbin 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
    ann_type = 'bbox'
    coco_dt = self._COCO.loadRes(res_file)
    coco_eval = COCOeval(self._COCO, coco_dt)
    coco_eval.params.useSegm = (ann_type == 'segm')
    coco_eval.evaluate()
    coco_eval.accumulate()
    self._print_detection_eval_metrics(coco_eval)
    eval_file = osp.join(output_dir, 'detection_results.pkl')
    with open(eval_file, 'wb') as fid:
      pickle.dump(coco_eval, fid, pickle.HIGHEST_PROTOCOL)
    print('Wrote COCO eval results to: {}'.format(eval_file))
eval_coco.py 文件源码 项目:seq2seq_temporal_attention 作者: aistairc 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def eval_coco(annFile, resFile):

    coco = COCO(annFile)
    cocoRes = coco.loadRes(resFile)
    cocoEval = COCOEvalCap(coco, cocoRes)
    cocoEval.evaluate()

    Bleu_4 = cocoEval.eval['Bleu_4']
    METEOR = cocoEval.eval['METEOR']
    ROUGE_L = cocoEval.eval['ROUGE_L']
    CIDEr = cocoEval.eval['CIDEr']
    total = Bleu_4 + METEOR + ROUGE_L + CIDEr
    score = {'Bleu_4': Bleu_4, 'METEOR': METEOR, 'ROUGE_L': ROUGE_L, 'CIDEr': CIDEr, 'total': total}

    return score
coco.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, image_set, year):
        imdb.__init__(self, 'coco_' + year + '_' + image_set)
        # COCO specific config options
        self.config = {'top_k' : 2000,
                       'use_salt' : True,
                       'cleanup' : True,
                       'crowd_thresh' : 0.7,
                       'min_size' : 2}
        # name, paths
        self._year = year
        self._image_set = image_set
        self._data_path = osp.join(cfg.DATA_DIR, 'coco')
        # load COCO API, classes, class <-> id mappings
        self._COCO = COCO(self._get_ann_file())
        cats = self._COCO.loadCats(self._COCO.getCatIds())
        self._classes = tuple(['__background__'] + [c['name'] for c in cats])
        self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
        self._class_to_coco_cat_id = dict(zip([c['name'] for c in cats],
                                              self._COCO.getCatIds()))
        self._image_index = self._load_image_set_index()
        # Default to roidb handler
        self.set_proposal_method('selective_search')
        self.competition_mode(False)

        # Some image sets are "views" (i.e. subsets) into others.
        # For example, minival2014 is a random 5000 image subset of val2014.
        # This mapping tells us where the view's images and proposals come from.
        self._view_map = {
            'minival2014' : 'val2014',          # 5k val2014 subset
            'valminusminival2014' : 'val2014',  # val2014 \setminus minival2014
        }
        coco_name = image_set + year  # e.g., "val2014"
        self._data_name = (self._view_map[coco_name]
                           if self._view_map.has_key(coco_name)
                           else coco_name)
        # Dataset splits that have ground-truth annotations (test splits
        # do not have gt annotations)
        self._gt_splits = ('train', 'val', 'minival')
coco.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _do_detection_eval(self, res_file, output_dir):
        ann_type = 'bbox'
        coco_dt = self._COCO.loadRes(res_file)
        coco_eval = COCOeval(self._COCO, coco_dt)
        coco_eval.params.useSegm = (ann_type == 'segm')
        coco_eval.evaluate()
        coco_eval.accumulate()
        self._print_detection_eval_metrics(coco_eval)
        eval_file = osp.join(output_dir, 'detection_results.pkl')
        with open(eval_file, 'wb') as fid:
            cPickle.dump(coco_eval, fid, cPickle.HIGHEST_PROTOCOL)
        print 'Wrote COCO eval results to: {}'.format(eval_file)


问题


面经


文章

微信
公众号

扫码关注公众号