def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'dermatologic': dermatologic_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
python类inception_preprocessing()的实例源码
preprocessing_factory.py 文件源码
项目:the-neural-perspective
作者: GokuMohandas
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'nasnet_mobile': inception_preprocessing,
'nasnet_large': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'inception_resnet_v2_rnn': inception_preprocessing,
'lenet': lenet_preprocessing,
'googlenet': googlenet_preprocessing,
'googlenet_rnn': googlenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'mobilenet': mobilenet_preprocessing,
'mobilenetdet': mobilenetdet_preprocessing
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn
def get_preprocessing(name, is_training=False):
"""Returns preprocessing_fn(image, height, width, **kwargs).
Args:
name: The name of the preprocessing function.
is_training: `True` if the model is being used for training and `False`
otherwise.
Returns:
preprocessing_fn: A function that preprocessing a single image (pre-batch).
It has the following signature:
image = preprocessing_fn(image, output_height, output_width, ...).
Raises:
ValueError: If Preprocessing `name` is not recognized.
"""
preprocessing_fn_map = {
'cifarnet': cifarnet_preprocessing,
'inception': inception_preprocessing,
'inception_v1': inception_preprocessing,
'inception_v2': inception_preprocessing,
'inception_v3': inception_preprocessing,
'inception_v4': inception_preprocessing,
'inception_resnet_v2': inception_preprocessing,
'lenet': lenet_preprocessing,
'mobilenet_v1': inception_preprocessing,
'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing,
'vgg_19': vgg_preprocessing,
'xception': xception_preprocessing,
'resnext_50': vgg_preprocessing,
'resnext_101': vgg_preprocessing,
'resnext_152': vgg_preprocessing,
'resnext_200': vgg_preprocessing,
'shufflenet_50_g4_d272': vgg_preprocessing,
'shufflenet_50_g4_d136': vgg_preprocessing,
}
if name not in preprocessing_fn_map:
raise ValueError('Preprocessing name [%s] was not recognized' % name)
def preprocessing_fn(image, output_height, output_width, **kwargs):
return preprocessing_fn_map[name].preprocess_image(
image, output_height, output_width, is_training=is_training, **kwargs)
return preprocessing_fn