python类plotly()的实例源码

network.py 文件源码 项目:neural-segmentation 作者: melsner 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plotVAEplotly(self, logdir, prefix, ctable=None, reverseUtt=False, batch_size=128, debug=False):
        ticks = [[-1,-0.5,0,0.5,1]]*self.latentDim
        samplePoints = np.array(np.meshgrid(*ticks)).T.reshape(-1,3)
        input_placeholder = np.ones(tuple([len(samplePoints)] + list(self.phon.output_shape[1:-1]) + [1]))
        preds = self.decode_word([samplePoints, input_placeholder], batch_size=batch_size)
        if reverseUtt:
            preds = getYae(preds, reverseUtt)
        reconstructed = reconstructXae(np.expand_dims(preds.argmax(-1), -1), ctable, maxLen=5)

        data = [go.Scatter3d(
            x = samplePoints[:,0],
            y = samplePoints[:,1],
            z = samplePoints[:,2],
            text = reconstructed,
            mode='text'
        )]
        layout = go.Layout()
        fig = go.Figure(data=data, layout=layout)
        plotly.offline.plot(fig, filename=logdir + '/' + prefix + '_VAEplot.html', auto_open=False)
offline.py 文件源码 项目:lddmm-ot 作者: jeanfeydy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def download_plotlyjs(download_url):
    warnings.warn('''
        `download_plotlyjs` is deprecated and will be removed in the
        next release. plotly.js is shipped with this module, it is no
        longer necessary to download this bundle separately.
    ''', DeprecationWarning)
    pass
offline.py 文件源码 项目:lddmm-ot 作者: jeanfeydy 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_plotlyjs():
    path = os.path.join('offline', 'plotly.min.js')
    plotlyjs = resource_string('plotly', path).decode('utf-8')
    return plotlyjs
offline.py 文件源码 项目:lddmm-ot 作者: jeanfeydy 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def enable_mpl_offline(resize=False, strip_style=False,
                       verbose=False, show_link=True,
                       link_text='Export to plot.ly', validate=True):
    """
    Convert mpl plots to locally hosted HTML documents.

    This function should be used with the inline matplotlib backend
    that ships with IPython that can be enabled with `%pylab inline`
    or `%matplotlib inline`. This works by adding an HTML formatter
    for Figure objects; the existing SVG/PNG formatters will remain
    enabled.

    (idea taken from `mpld3._display.enable_notebook`)

    Example:
from plotly.offline import enable_mpl_offline
import matplotlib.pyplot as plt

enable_mpl_offline()

fig = plt.figure()
x = [10, 15, 20, 25, 30]
y = [100, 250, 200, 150, 300]
plt.plot(x, y, "o")
fig
```
"""
init_notebook_mode()

ip = IPython.core.getipython.get_ipython()
formatter = ip.display_formatter.formatters['text/html']
formatter.for_type(matplotlib.figure.Figure,
                   lambda fig: iplot_mpl(fig, resize, strip_style, verbose,
                                         show_link, link_text, validate))

```

visuals_plotly.py 文件源码 项目:B-Tax 作者: open-source-economics 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def asset_bubble(output_by_assets):
    """Creates a crossfilter bokeh plot of results by asset

        :output_by_assets: Contains output by asset
        :type output_by_assets: dataframe
        :returns:
        :rtype:
    """
    import numpy as np
    import pandas as pd
    import plotly.plotly as py
    import plotly.graph_objs as go

    df_all = output_by_assets.copy()

    df = df_all[df_all['asset_category']!='Intellectual Property'].copy()

    # sort categories
    df['sort_order'] = df['asset_category']
    df['sort_order'].replace(asset_category_order,inplace=True)
    df.sort_values(by="sort_order",axis=0,ascending=True,inplace=True)
    df.reset_index(inplace=True)


    # update asset_category names for better printing
    df['asset_category'].replace(asset_categories_for_print,inplace=True)

    df.iplot(kind='bubble', x='metr_c', y='asset_category', size='assets', text='Asset',
             xTitle='Marginal Effective Tax Rate', yTitle='Asset Category',
             filename='BubbleChart.png')
__init__.py 文件源码 项目:evologger 作者: freeranger 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def write(timestamp, temperatures):

    if invalidConfig:
        if plotly_debugEnabled:
            plotly_logger.debug('Invalid config, aborting write')
            return []

    debug_message = 'Writing to ' + plugin_name
    if not plotly_writeEnabled:
        debug_message += ' [SIMULATED]'
    plotly_logger.debug(debug_message)

    debug_text = '%s: ' % timestamp

    if plotly_writeEnabled:
        # Stream tokens from plotly
        tls.set_credentials_file(stream_ids=stream_ids_array)

    try:
        if plotly_writeEnabled:
            py.sign_in(plotly_username, plotly_api_key)

        for temperature in temperatures:
            debug_text += "%s (%s A" % (temperature.zone, temperature.actual)
            if temperature.target is not None:
                debug_text += ", %s T" % temperature.target
            debug_text += ') '

            if plotly_writeEnabled:
                if temperature.zone in zones:
                    stream_id = zones[temperature.zone]
                    s = py.Stream(stream_id)
                    s.open()
                    ts = timestamp.strftime('%Y-%m-%d %H:%M:%S')
                    s.write(dict(x=ts, y=temperature.actual))
                    s.close()
                else:
                    plotly_logger.debug("Zone %s does not have a stream id, ignoring")

    except Exception, e:
        plotly_logger.error("Plot.ly API error - aborting write\n%s", e)

    if plotly_debugEnabled:
        plotly_logger.debug(debug_text)
plot_results.py 文件源码 项目:TabularSASR 作者: SimsGautam 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_results(avg, avg_upper, avg_lower):

    n = len(avg)
    x =[i+1 for i in range(n+1)]
    x_rev = x[::-1]

    y1 = list(avg)
    y_upper = list(avg_upper)
    y_lower = list(avg_lower)
    y_lower = [0,0] + y_lower[::-1]

    trace1 = Scatter(
        x=x+x_rev,
        y=y_upper+y_lower,
        fill='tozerox',
        fillcolor='rgba(0,100,80,0.2)',
        line=Line(color='transparent'),
        showlegend=False,
        name='Fair'
    )

    trace2 = Scatter(
        x=x,
        y=y1,
        line=Line(color='rgb(0,100,80)'),
        mode='lines',
        name='Fair'
    )

    data = Data([trace1, trace2])

    layout = Layout(
        paper_bgcolor='rgb(255,255,255)',
        plot_bgcolor='rgb(229,229,229)',
        xaxis=XAxis(
            gridcolor='rgb(255,255,255)',
            range=[1,n+1],
            showgrid=True,
            showline=False,
            showticklabels=True,
            tickcolor='rgb(127,127,127)',
            ticks='outside',
            zeroline=False
        ),
        yaxis=YAxis(
            gridcolor='rgb(255,255,255)',
            showgrid=True,
            showline=False,
            showticklabels=True,
            tickcolor='rgb(127,127,127)',
            ticks='outside',
            zeroline=False
        )
    )

    plotly.offline.plot({"data": data, "layout": layout})
analyse.py 文件源码 项目:Question-Answering 作者: arianhosseini 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def gen_heatmap(model_name):

    evaluator, valid_stream, ds = build_evaluator(model_name)
    analysis_path = os.path.join('heatmap_analysis', model_name + ".html")

    out_file = open(analysis_path, 'w')
    out_file.write('<html>')
    out_file.write('<body style="background-color:white">')

    printed = 0;
    for batch in valid_stream.get_epoch_iterator(as_dict=True):

        if batch["context"].shape[1] > 150:
            continue;

        evaluator.initialize_aggregators()
        evaluator.process_batch(batch)
        analysis_results = evaluator.get_aggregated_values()
        q_c_attention = analysis_results["question_context_attention"]

        context_words = [ds.vocab[i]+' '+str(index) for index,i in enumerate(batch["context"][0])]
        question_words = [str(index)+' '+ ds.vocab[i] for index, i in enumerate(batch["question"][0])]
        answer_words = [ds.vocab[i] for i in batch["answer"][0]]

        out_file.write('answer: '+' '.join(answer_words))
        out_file.write('<br>')

        x= context_words
        y= question_words
        z = q_c_attention[0]
        # print z.shape

        data = [
            go.Heatmap(z=z,x=x,y=y,colorscale='Viridis')
        ]
        div = plotly.offline.plot(data,auto_open=False, output_type='div')
        out_file.write(div)
        out_file.write('<br>')
        out_file.write('<br>')

        printed += 1
        if printed >= 20:
            break;


    out_file.write('</body>')
    out_file.write('</html>')
    out_file.close()
    print "done ;)"


问题


面经


文章

微信
公众号

扫码关注公众号