def save_function_tuple(self, func):
""" Pickles an actual func object.
A func comprises: code, globals, defaults, closure, and dict. We
extract and save these, injecting reducing functions at certain points
to recreate the func object. Keep in mind that some of these pieces
can contain a ref to the func itself. Thus, a naive save on these
pieces could trigger an infinite loop of save's. To get around that,
we first create a skeleton func object using just the code (this is
safe, since this won't contain a ref to the func), and memoize it as
soon as it's created. The other stuff can then be filled in later.
"""
save = self.save
write = self.write
code, f_globals, defaults, closure, dct, base_globals = self.extract_func_data(func)
save(_fill_function) # skeleton function updater
write(pickle.MARK) # beginning of tuple that _fill_function expects
# create a skeleton function object and memoize it
save(_make_skel_func)
save((code, closure, base_globals))
write(pickle.REDUCE)
self.memoize(func)
# save the rest of the func data needed by _fill_function
save(f_globals)
save(defaults)
save(dct)
save(func.__module__)
write(pickle.TUPLE)
write(pickle.REDUCE) # applies _fill_function on the tuple
python类TUPLE的实例源码
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
(3, 0): pickle.EMPTY_TUPLE,
(3, 1): pickle.TUPLE1,
(3, 2): pickle.TUPLE2,
(3, 3): pickle.TUPLE3,
(3, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def test_bad_stack(self):
badpickles = [
'.', # STOP
'0', # POP
'1', # POP_MARK
'2', # DUP
# '(2', # PyUnpickler doesn't raise
'R', # REDUCE
')R',
'a', # APPEND
'Na',
'b', # BUILD
'Nb',
'd', # DICT
'e', # APPENDS
# '(e', # PyUnpickler raises AttributeError
'i__builtin__\nlist\n', # INST
'l', # LIST
'o', # OBJ
'(o',
'p1\n', # PUT
'q\x00', # BINPUT
'r\x00\x00\x00\x00', # LONG_BINPUT
's', # SETITEM
'Ns',
'NNs',
't', # TUPLE
'u', # SETITEMS
# '(u', # PyUnpickler doesn't raise
'}(Nu',
'\x81', # NEWOBJ
')\x81',
'\x85', # TUPLE1
'\x86', # TUPLE2
'N\x86',
'\x87', # TUPLE3
'N\x87',
'NN\x87',
]
for p in badpickles:
self.check_unpickling_error(self.bad_stack_errors, p)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def test_bad_stack(self):
badpickles = [
'.', # STOP
'0', # POP
'1', # POP_MARK
'2', # DUP
# '(2', # PyUnpickler doesn't raise
'R', # REDUCE
')R',
'a', # APPEND
'Na',
'b', # BUILD
'Nb',
'd', # DICT
'e', # APPENDS
# '(e', # PyUnpickler raises AttributeError
'i__builtin__\nlist\n', # INST
'l', # LIST
'o', # OBJ
'(o',
'p1\n', # PUT
'q\x00', # BINPUT
'r\x00\x00\x00\x00', # LONG_BINPUT
's', # SETITEM
'Ns',
'NNs',
't', # TUPLE
'u', # SETITEMS
# '(u', # PyUnpickler doesn't raise
'}(Nu',
'\x81', # NEWOBJ
')\x81',
'\x85', # TUPLE1
'\x86', # TUPLE2
'N\x86',
'\x87', # TUPLE3
'N\x87',
'NN\x87',
]
for p in badpickles:
self.check_unpickling_error(self.bad_stack_errors, p)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
(3, 0): pickle.EMPTY_TUPLE,
(3, 1): pickle.TUPLE1,
(3, 2): pickle.TUPLE2,
(3, 3): pickle.TUPLE3,
(3, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def save_function_tuple(self, func):
""" Pickles an actual func object.
A func comprises: code, globals, defaults, closure, and dict. We
extract and save these, injecting reducing functions at certain points
to recreate the func object. Keep in mind that some of these pieces
can contain a ref to the func itself. Thus, a naive save on these
pieces could trigger an infinite loop of save's. To get around that,
we first create a skeleton func object using just the code (this is
safe, since this won't contain a ref to the func), and memoize it as
soon as it's created. The other stuff can then be filled in later.
"""
save = self.save
write = self.write
code, f_globals, defaults, closure, dct, base_globals = self.extract_func_data(func)
save(_fill_function) # skeleton function updater
write(pickle.MARK) # beginning of tuple that _fill_function expects
# create a skeleton function object and memoize it
save(_make_skel_func)
save((code, closure, base_globals))
write(pickle.REDUCE)
self.memoize(func)
# save the rest of the func data needed by _fill_function
save(f_globals)
save(defaults)
save(dct)
write(pickle.TUPLE)
write(pickle.REDUCE) # applies _fill_function on the tuple
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
(3, 0): pickle.EMPTY_TUPLE,
(3, 1): pickle.TUPLE1,
(3, 2): pickle.TUPLE2,
(3, 3): pickle.TUPLE3,
(3, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
expected = expected_opcode[min(proto, 3), len(x)]
self.assertTrue(opcode_in_pickle(expected, s))
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assertEqual(x, y, (proto, x, s, y))
expected = expected_opcode[proto, len(x)]
self.assertEqual(opcode_in_pickle(expected, s), True)
def test_short_tuples(self):
# Map (proto, len(tuple)) to expected opcode.
expected_opcode = {(0, 0): pickle.TUPLE,
(0, 1): pickle.TUPLE,
(0, 2): pickle.TUPLE,
(0, 3): pickle.TUPLE,
(0, 4): pickle.TUPLE,
(1, 0): pickle.EMPTY_TUPLE,
(1, 1): pickle.TUPLE,
(1, 2): pickle.TUPLE,
(1, 3): pickle.TUPLE,
(1, 4): pickle.TUPLE,
(2, 0): pickle.EMPTY_TUPLE,
(2, 1): pickle.TUPLE1,
(2, 2): pickle.TUPLE2,
(2, 3): pickle.TUPLE3,
(2, 4): pickle.TUPLE,
(3, 0): pickle.EMPTY_TUPLE,
(3, 1): pickle.TUPLE1,
(3, 2): pickle.TUPLE2,
(3, 3): pickle.TUPLE3,
(3, 4): pickle.TUPLE,
}
a = ()
b = (1,)
c = (1, 2)
d = (1, 2, 3)
e = (1, 2, 3, 4)
for proto in protocols:
for x in a, b, c, d, e:
s = self.dumps(x, proto)
y = self.loads(s)
self.assert_is_copy(x, y)
expected = expected_opcode[min(proto, 3), len(x)]
self.assertTrue(opcode_in_pickle(expected, s))
def save_function(self, obj, name=None):
""" Registered with the dispatch to handle all function types.
Determines what kind of function obj is (e.g. lambda, defined at
interactive prompt, etc) and handles the pickling appropriately.
"""
write = self.write
if name is None:
name = obj.__name__
try:
# whichmodule() could fail, see
# https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling
modname = pickle.whichmodule(obj, name)
except Exception:
modname = None
# print('which gives %s %s %s' % (modname, obj, name))
try:
themodule = sys.modules[modname]
except KeyError:
# eval'd items such as namedtuple give invalid items for their function __module__
modname = '__main__'
if modname == '__main__':
themodule = None
if themodule:
self.modules.add(themodule)
if getattr(themodule, name, None) is obj:
return self.save_global(obj, name)
# if func is lambda, def'ed at prompt, is in main, or is nested, then
# we'll pickle the actual function object rather than simply saving a
# reference (as is done in default pickler), via save_function_tuple.
if islambda(obj) or obj.__code__.co_filename == '<stdin>' or themodule is None:
#print("save global", islambda(obj), obj.__code__.co_filename, modname, themodule)
self.save_function_tuple(obj)
return
else:
# func is nested
klass = getattr(themodule, name, None)
if klass is None or klass is not obj:
self.save_function_tuple(obj)
return
if obj.__dict__:
# essentially save_reduce, but workaround needed to avoid recursion
self.save(_restore_attr)
write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
self.save(obj.__dict__)
write(pickle.TUPLE + pickle.REDUCE)
else:
write(pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
def save_function(self, obj, name=None):
""" Registered with the dispatch to handle all function types.
Determines what kind of function obj is (e.g. lambda, defined at
interactive prompt, etc) and handles the pickling appropriately.
"""
write = self.write
if name is None:
name = obj.__name__
modname = pickle.whichmodule(obj, name)
# print('which gives %s %s %s' % (modname, obj, name))
try:
themodule = sys.modules[modname]
except KeyError:
# eval'd items such as namedtuple give invalid items for their function __module__
modname = '__main__'
if modname == '__main__':
themodule = None
if themodule:
self.modules.add(themodule)
if getattr(themodule, name, None) is obj:
return self.save_global(obj, name)
# if func is lambda, def'ed at prompt, is in main, or is nested, then
# we'll pickle the actual function object rather than simply saving a
# reference (as is done in default pickler), via save_function_tuple.
if islambda(obj) or obj.__code__.co_filename == '<stdin>' or themodule is None:
#print("save global", islambda(obj), obj.__code__.co_filename, modname, themodule)
self.save_function_tuple(obj)
return
else:
# func is nested
klass = getattr(themodule, name, None)
if klass is None or klass is not obj:
self.save_function_tuple(obj)
return
if obj.__dict__:
# essentially save_reduce, but workaround needed to avoid recursion
self.save(_restore_attr)
write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
self.save(obj.__dict__)
write(pickle.TUPLE + pickle.REDUCE)
else:
write(pickle.GLOBAL + modname + '\n' + name + '\n')
self.memoize(obj)
def test_bad_stack(self):
badpickles = [
b'.', # STOP
b'0', # POP
b'1', # POP_MARK
b'2', # DUP
# b'(2', # PyUnpickler doesn't raise
b'R', # REDUCE
b')R',
b'a', # APPEND
b'Na',
b'b', # BUILD
b'Nb',
b'd', # DICT
b'e', # APPENDS
# b'(e', # PyUnpickler raises AttributeError
b'ibuiltins\nlist\n', # INST
b'l', # LIST
b'o', # OBJ
b'(o',
b'p1\n', # PUT
b'q\x00', # BINPUT
b'r\x00\x00\x00\x00', # LONG_BINPUT
b's', # SETITEM
b'Ns',
b'NNs',
b't', # TUPLE
b'u', # SETITEMS
# b'(u', # PyUnpickler doesn't raise
b'}(Nu',
b'\x81', # NEWOBJ
b')\x81',
b'\x85', # TUPLE1
b'\x86', # TUPLE2
b'N\x86',
b'\x87', # TUPLE3
b'N\x87',
b'NN\x87',
b'\x90', # ADDITEMS
# b'(\x90', # PyUnpickler raises AttributeError
b'\x91', # FROZENSET
b'\x92', # NEWOBJ_EX
b')}\x92',
b'\x93', # STACK_GLOBAL
b'Vlist\n\x93',
b'\x94', # MEMOIZE
]
for p in badpickles:
self.check_unpickling_error(self.bad_stack_errors, p)
def save_function_tuple(self, func):
""" Pickles an actual func object.
A func comprises: code, globals, defaults, closure, and dict. We
extract and save these, injecting reducing functions at certain points
to recreate the func object. Keep in mind that some of these pieces
can contain a ref to the func itself. Thus, a naive save on these
pieces could trigger an infinite loop of save's. To get around that,
we first create a skeleton func object using just the code (this is
safe, since this won't contain a ref to the func), and memoize it as
soon as it's created. The other stuff can then be filled in later.
"""
if is_tornado_coroutine(func):
self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,),
obj=func)
return
save = self.save
write = self.write
code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func)
save(_fill_function) # skeleton function updater
write(pickle.MARK) # beginning of tuple that _fill_function expects
self._save_subimports(
code,
itertools.chain(f_globals.values(), closure_values or ()),
)
# create a skeleton function object and memoize it
save(_make_skel_func)
save((
code,
len(closure_values) if closure_values is not None else -1,
base_globals,
))
write(pickle.REDUCE)
self.memoize(func)
# save the rest of the func data needed by _fill_function
save(f_globals)
save(defaults)
save(dct)
save(func.__module__)
save(closure_values)
write(pickle.TUPLE)
write(pickle.REDUCE) # applies _fill_function on the tuple