def download_embedding():
"""
Download files from web
Seems cannot download by pgm
Download from: https://sites.google.com/site/rmyeid/projects/polyglot
Returns:
A tuple (word, embedding). Emebddings shape is (100004, 64).
"""
assert (tf.gfile.Exists(FLAGS.chr_embedding_dir)), (
"Embedding pkl don't found, please \
download the Chinese chr embedding from https://sites.google.com/site/rmyeid/projects/polyglot"
)
with open(FLAGS.chr_embedding_dir, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
p = u.load()
return p
python类_Unpickler()的实例源码
def load_mnist():
url = "http://deeplearning.net/data/mnist/mnist.pkl.gz"
mnist_compressed = "mnist.pkl.gz"
if not exists(mnist_compressed):
print("Downloading MNIST")
urlretrieve(url, mnist_compressed)
# Load the dataset
with gzip.open(mnist_compressed, "rb") as f:
u = pickle._Unpickler(f)
u.encoding = "latin1"
data = u.load()
data = [(X.reshape(-1, 28, 28), y) for X, y in data]
return data
def get_dataset():
f = gzip.open('mnist.pkl.gz', 'rb')
u = pickle._Unpickler(f)
u.encoding = 'latin1'
train_set, valid_set, test_set = u.load()
f.close()
return train_set, valid_set, test_set
def _load_data(self):
script_dir = os.path.dirname(__file__)
mnist_file = os.path.join(os.path.join(script_dir, 'data'), 'mnist.pkl.gz')
with gzip.open(mnist_file, 'rb') as mnist_file:
u = pickle._Unpickler(mnist_file)
u.encoding = 'latin1'
train, val, test = u.load()
return train, val, test
def load(filename):
with open(filename, "rb") as f:
unpickler = pickle._Unpickler(f)
while True:
try:
yield unpickler.load()
except EOFError:
break
def load(filename):
with open(filename, "rb") as f:
unpickler = pickle._Unpickler(f)
while True:
try:
yield unpickler.load()
except EOFError:
break
dataset.py 文件源码
项目:Neural-Architecture-Search-with-RL
作者: dhruvramani
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def load_data(self, file_name):
with open(file_name, 'rb') as file:
unpickler = pickle._Unpickler(file)
unpickler.encoding = 'latin1'
contents = unpickler.load()
X, Y = np.asarray(contents['data'], dtype=np.float32), np.asarray(contents['labels'])
one_hot = np.zeros((Y.size, Y.max() + 1))
one_hot[np.arange(Y.size), Y] = 1
return X, one_hot
def load_data(dataset):
''' Loads the dataset
:type dataset: string
:param dataset: the path to the dataset (here MNIST)
'''
#############
# LOAD DATA #
#############
# Download the MNIST dataset if it is not present
data_dir, data_file = os.path.split(dataset)
if data_dir == "" and not os.path.isfile(dataset):
# Check if dataset is in the data directory.
new_path = os.path.join(
os.path.split(__file__)[0],
"data",
dataset
)
if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
dataset = new_path
if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
import urllib
origin = (
'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
)
print('Downloading data from %s' % origin)
urllib.urlretrieve(origin, dataset)
print('loading data...')
# Load the dataset
f = gzip.open(dataset, 'rb')
if sys.version_info[0] == 3:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
train_set, valid_set, test_set = u.load()
else:
train_set, valid_set, test_set = pickle.load(f)
f.close()
#train_set, valid_set, test_set format: tuple(input, target)
#input is an numpy.ndarray of 2 dimensions (a matrix)
#which row's correspond to an example. target is a
#numpy.ndarray of 1 dimensions (vector)) that have the same length as
#the number of rows in the input. It should give the target
#target to the example with the same index in the input.
return train_set, valid_set, test_set