def __init__(self, writer, reducers=None, protocol=pickle.HIGHEST_PROTOCOL):
pickle.Pickler.__init__(self, writer, protocol=protocol)
self.extended_init = set()
if reducers is None:
reducers = {}
if hasattr(pickle.Pickler, 'dispatch'):
# Make the dispatch registry an instance level attribute instead of
# a reference to the class dictionary under Python 2
self.dispatch = pickle.Pickler.dispatch.copy()
else:
# Under Python 3 initialize the dispatch table with a copy of the
# default registry
self.dispatch_table = copyreg.dispatch_table.copy()
for type, reduce_func in reducers.items():
self.register(type, reduce_func)
python类Pickler()的实例源码
def save(self, obj):
if isinstance(obj, (types.MethodType, type({}.pop))):
# the Pickler cannot pickle instance methods; here we decompose
# them into components that make them uniquely identifiable
if hasattr(obj, '__func__'):
func_name = obj.__func__.__name__
else:
func_name = obj.__name__
inst = obj.__self__
if type(inst) == type(pickle):
obj = _MyHash(func_name, inst.__name__)
elif inst is None:
# type(None) or type(module) do not pickle
obj = _MyHash(func_name, inst)
else:
cls = obj.__self__.__class__
obj = _MyHash(func_name, inst, cls)
Pickler.save(self, obj)
def save_extras(self):
if not self.cachefile:
return
glf = bb.utils.lockfile(self.cachefile + ".lock", shared=True)
i = os.getpid()
lf = None
while not lf:
lf = bb.utils.lockfile(self.cachefile + ".lock." + str(i), retry=False)
if not lf or os.path.exists(self.cachefile + "-" + str(i)):
if lf:
bb.utils.unlockfile(lf)
lf = None
i = i + 1
continue
with open(self.cachefile + "-" + str(i), "wb") as f:
p = pickle.Pickler(f, -1)
p.dump([self.cachedata_extras, self.__class__.CACHE_VERSION])
bb.utils.unlockfile(lf)
bb.utils.unlockfile(glf)
def dumpState(self):
DUMP_LOCK.acquire()
try:
TMP_STATE_FILENAME = STATE_FILENAME+".tmp"
open(TMP_STATE_FILENAME, 'w').close()
s = open(TMP_STATE_FILENAME, "wb")
p = pickle.Pickler(s, pickle.HIGHEST_PROTOCOL)
p.dump(self._agg)
p.dump(self._slices)
p.dump(self.proxy_dockermaster)
p.dump(self.public_url)
s.close()
copyfile(TMP_STATE_FILENAME, STATE_FILENAME)
except RuntimeError:
print 'error in DumpState'
pass
DUMP_LOCK.release()
def test_priming_pickler_memo(self):
# Verify that we can set the Pickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
self.assertNotEqual(first_pickled, primed_pickled)
def warn(server, user, data):
if server.name in data.keys():
if user.name in data[server.name].keys():
data[server.name][user.name] += 1
else:
uniqueData = {user.name: 1}
data[server.name].update(uniqueData)
else:
uniqueData = {server.name:{user.name: 1}}
data.update(uniqueData)
f = open(fileName, "wb")
p = pickle.Pickler(f)
p.dump(data)
f.close()
return data
#####################################################################################################################################################
def post(server, user, data, money):
if server.name in data.keys():
if user.name in data[server.name].keys():
data[server.name][user.name] = money
else:
uniqueData = {user.name: 500}
data[server.name].update(uniqueData)
else:
uniqueData = {server.name:{user.name: 500}}
data.update(uniqueData)
f = open(fileName, "wb")
p = pickle.Pickler(f)
p.dump(data)
f.close()
return data
########################################################################################################################
def _dorequest(self, rf, wf):
rp = pickle.Unpickler(rf)
try:
request = rp.load()
except EOFError:
return 0
if self._verbose > 1: print "Got request: %s" % repr(request)
try:
methodname, args, id = request
if '.' in methodname:
reply = (None, self._special(methodname, args), id)
elif methodname[0] == '_':
raise NameError, "illegal method name %s" % repr(methodname)
else:
method = getattr(self, methodname)
reply = (None, apply(method, args), id)
except:
reply = (sys.exc_type, sys.exc_value, id)
if id < 0 and reply[:2] == (None, None):
if self._verbose > 1: print "Suppress reply"
return 1
if self._verbose > 1: print "Send reply: %s" % repr(reply)
wp = pickle.Pickler(wf)
wp.dump(reply)
return 1
def save(self, obj):
if isinstance(obj, (types.MethodType, type({}.pop))):
# the Pickler cannot pickle instance methods; here we decompose
# them into components that make them uniquely identifiable
if hasattr(obj, '__func__'):
func_name = obj.__func__.__name__
else:
func_name = obj.__name__
inst = obj.__self__
if type(inst) == type(pickle):
obj = _MyHash(func_name, inst.__name__)
elif inst is None:
# type(None) or type(module) do not pickle
obj = _MyHash(func_name, inst)
else:
cls = obj.__self__.__class__
obj = _MyHash(func_name, inst, cls)
Pickler.save(self, obj)
def save_global(self, obj, name=None, pack=struct.pack):
# We have to override this method in order to deal with objects
# defined interactively in IPython that are not injected in
# __main__
kwargs = dict(name=name, pack=pack)
if sys.version_info >= (3, 4):
del kwargs['pack']
try:
Pickler.save_global(self, obj, **kwargs)
except pickle.PicklingError:
Pickler.save_global(self, obj, **kwargs)
module = getattr(obj, "__module__", None)
if module == '__main__':
my_name = name
if my_name is None:
my_name = obj.__name__
mod = sys.modules[module]
if not hasattr(mod, my_name):
# IPython doesn't inject the variables define
# interactively in __main__
setattr(mod, my_name, obj)
def setError(self, source, i, stocks):
"Triggers the error protocol. Saves source, index, and stocks to PKL file."
self.hasErrorOccurred = True
print('\n')
print('The connection has been severed. Saving existing data to: ' +
self.fileName)
with open(self.fileName, 'wb') as pklFile:
pickler = pickle.Pickler(pklFile, pickle.HIGHEST_PROTOCOL)
# Dump location
pickler.dump(source)
# Dump page number
pickler.dump(i)
# Dump stocks list
pickler.dump(stocks)
return
def test_priming_pickler_memo(self):
# Verify that we can set the Pickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
self.assertNotEqual(first_pickled, primed_pickled)
def save(self, obj):
if isinstance(obj, (types.MethodType, type({}.pop))):
# the Pickler cannot pickle instance methods; here we decompose
# them into components that make them uniquely identifiable
if hasattr(obj, '__func__'):
func_name = obj.__func__.__name__
else:
func_name = obj.__name__
inst = obj.__self__
if type(inst) == type(pickle):
obj = _MyHash(func_name, inst.__name__)
elif inst is None:
# type(None) or type(module) do not pickle
obj = _MyHash(func_name, inst)
else:
cls = obj.__self__.__class__
obj = _MyHash(func_name, inst, cls)
Pickler.save(self, obj)
def save_global(self, obj, name=None, pack=struct.pack):
# We have to override this method in order to deal with objects
# defined interactively in IPython that are not injected in
# __main__
kwargs = dict(name=name, pack=pack)
if sys.version_info >= (3, 4):
del kwargs['pack']
try:
Pickler.save_global(self, obj, **kwargs)
except pickle.PicklingError:
Pickler.save_global(self, obj, **kwargs)
module = getattr(obj, "__module__", None)
if module == '__main__':
my_name = name
if my_name is None:
my_name = obj.__name__
mod = sys.modules[module]
if not hasattr(mod, my_name):
# IPython doesn't inject the variables define
# interactively in __main__
setattr(mod, my_name, obj)
def test_priming_pickler_memo(self):
# Verify that we can set the Pickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
self.assertNotEqual(first_pickled, primed_pickled)
def test_pickler(self):
basesize = support.calcobjsize('5P2n3i2n3iP')
p = _pickle.Pickler(io.BytesIO())
self.assertEqual(object.__sizeof__(p), basesize)
MT_size = struct.calcsize('3nP0n')
ME_size = struct.calcsize('Pn0P')
check = self.check_sizeof
check(p, basesize +
MT_size + 8 * ME_size + # Minimal memo table size.
sys.getsizeof(b'x'*4096)) # Minimal write buffer size.
for i in range(6):
p.dump(chr(i))
check(p, basesize +
MT_size + 32 * ME_size + # Size of memo table required to
# save references to 6 objects.
0) # Write buffer is cleared after every dump().
def python_memcache_serializer(key, value):
flags = 0
if isinstance(value, str):
pass
elif isinstance(value, int):
flags |= FLAG_INTEGER
value = "%d" % value
elif isinstance(value, long):
flags |= FLAG_LONG
value = "%d" % value
else:
flags |= FLAG_PICKLE
output = StringIO()
pickler = pickle.Pickler(output, 0)
pickler.dump(value)
value = output.getvalue()
return value, flags
def __init__(self, filename, compress=0, cache_size=10, protocol=None):
self._filename = filename
self._filenames = [filename, ]
self.cache_size = cache_size
self.compress = compress
if not self.compress:
self.file = open(filename, 'wb')
else:
self.file = BytesIO()
# Count the number of npy files that we have created:
self._npy_counter = 0
# By default we want a pickle protocol that only changes with
# the major python version and not the minor one
if protocol is None:
protocol = (pickle.DEFAULT_PROTOCOL if PY3
else pickle.HIGHEST_PROTOCOL)
Pickler.__init__(self, self.file,
protocol=protocol)
# delayed import of numpy, to avoid tight coupling
try:
import numpy as np
except ImportError:
np = None
self.np = np
def save(self, obj):
if isinstance(obj, (types.MethodType, type({}.pop))):
# the Pickler cannot pickle instance methods; here we decompose
# them into components that make them uniquely identifiable
if hasattr(obj, '__func__'):
func_name = obj.__func__.__name__
else:
func_name = obj.__name__
inst = obj.__self__
if type(inst) == type(pickle):
obj = _MyHash(func_name, inst.__name__)
elif inst is None:
# type(None) or type(module) do not pickle
obj = _MyHash(func_name, inst)
else:
cls = obj.__self__.__class__
obj = _MyHash(func_name, inst, cls)
Pickler.save(self, obj)
def save_global(self, obj, name=None, pack=struct.pack):
# We have to override this method in order to deal with objects
# defined interactively in IPython that are not injected in
# __main__
kwargs = dict(name=name, pack=pack)
if sys.version_info >= (3, 4):
del kwargs['pack']
try:
Pickler.save_global(self, obj, **kwargs)
except pickle.PicklingError:
Pickler.save_global(self, obj, **kwargs)
module = getattr(obj, "__module__", None)
if module == '__main__':
my_name = name
if my_name is None:
my_name = obj.__name__
mod = sys.modules[module]
if not hasattr(mod, my_name):
# IPython doesn't inject the variables define
# interactively in __main__
setattr(mod, my_name, obj)
def save(self, obj):
# Remove the tag.trace attribute from Variable and Apply nodes
if isinstance(obj, theano.gof.utils.scratchpad):
for tag in self.tag_to_remove:
if hasattr(obj, tag):
del obj.__dict__[tag]
# Remove manually-added docstring of Elemwise ops
elif (isinstance(obj, theano.tensor.Elemwise)):
if '__doc__' in obj.__dict__:
del obj.__dict__['__doc__']
return Pickler.save(self, obj)
# Make an unpickler that tries encoding byte streams before raising TypeError.
# This is useful with python 3, in order to unpickle files created with
# python 2.
# This code is taken from Pandas, https://github.com/pydata/pandas,
# under the same 3-clause BSD license.
def test_priming_pickler_memo(self):
# Verify that we can set the Pickler's memo attribute.
data = ["abcdefg", "abcdefg", 44]
f = io.BytesIO()
pickler = self.pickler_class(f)
pickler.dump(data)
first_pickled = f.getvalue()
f = io.BytesIO()
primed = self.pickler_class(f)
primed.memo = pickler.memo
primed.dump(data)
primed_pickled = f.getvalue()
self.assertNotEqual(first_pickled, primed_pickled)
def __init__(self, filename, compress=0, cache_size=10, protocol=None):
self._filename = filename
self._filenames = [filename, ]
self.cache_size = cache_size
self.compress = compress
if not self.compress:
self.file = open(filename, 'wb')
else:
self.file = BytesIO()
# Count the number of npy files that we have created:
self._npy_counter = 1
# By default we want a pickle protocol that only changes with
# the major python version and not the minor one
if protocol is None:
protocol = (pickle.DEFAULT_PROTOCOL if PY3_OR_LATER
else pickle.HIGHEST_PROTOCOL)
Pickler.__init__(self, self.file,
protocol=protocol)
# delayed import of numpy, to avoid tight coupling
try:
import numpy as np
except ImportError:
np = None
self.np = np
def save(self, obj):
if isinstance(obj, (types.MethodType, type({}.pop))):
# the Pickler cannot pickle instance methods; here we decompose
# them into components that make them uniquely identifiable
if hasattr(obj, '__func__'):
func_name = obj.__func__.__name__
else:
func_name = obj.__name__
inst = obj.__self__
if type(inst) == type(pickle):
obj = _MyHash(func_name, inst.__name__)
elif inst is None:
# type(None) or type(module) do not pickle
obj = _MyHash(func_name, inst)
else:
cls = obj.__self__.__class__
obj = _MyHash(func_name, inst, cls)
Pickler.save(self, obj)
def save_global(self, obj, name=None, pack=struct.pack):
# We have to override this method in order to deal with objects
# defined interactively in IPython that are not injected in
# __main__
kwargs = dict(name=name, pack=pack)
if sys.version_info >= (3, 4):
del kwargs['pack']
try:
Pickler.save_global(self, obj, **kwargs)
except pickle.PicklingError:
Pickler.save_global(self, obj, **kwargs)
module = getattr(obj, "__module__", None)
if module == '__main__':
my_name = name
if my_name is None:
my_name = obj.__name__
mod = sys.modules[module]
if not hasattr(mod, my_name):
# IPython doesn't inject the variables define
# interactively in __main__
setattr(mod, my_name, obj)
def loadData (self, filename, verbose=True, replace_missing=True):
''' Get the data from a text file in one of 3 formats: matrix, sparse, binary_sparse'''
if verbose: print("========= Reading " + filename)
start = time.time()
if self.use_pickle and os.path.exists (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle")):
with open (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"), "r") as pickle_file:
vprint (verbose, "Loading pickle file : " + os.path.join(self.tmp_dir, os.path.basename(filename) + ".pickle"))
return pickle.load(pickle_file)
if 'format' not in self.info.keys():
self.getFormatData(filename)
if 'feat_num' not in self.info.keys():
self.getNbrFeatures(filename)
data_func = {'dense':data_io.data, 'sparse':data_io.data_sparse, 'sparse_binary':data_io.data_binary_sparse}
data = data_func[self.info['format']](filename, self.info['feat_num'])
# INPORTANT: when we replace missing values we double the number of variables
if self.info['format']=='dense' and replace_missing and np.any(map(np.isnan,data)):
vprint (verbose, "Replace missing values by 0 (slow, sorry)")
data = data_converter.replace_missing(data)
if self.use_pickle:
with open (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"), "wb") as pickle_file:
vprint (verbose, "Saving pickle file : " + os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"))
p = pickle.Pickler(pickle_file)
p.fast = True
p.dump(data)
end = time.time()
if verbose: print( "[+] Success in %5.2f sec" % (end - start))
return data
def loadLabel (self, filename, verbose=True):
''' Get the solution/truth values'''
if verbose: print("========= Reading " + filename)
start = time.time()
if self.use_pickle and os.path.exists (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle")):
with open (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"), "r") as pickle_file:
vprint (verbose, "Loading pickle file : " + os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"))
return pickle.load(pickle_file)
if 'task' not in self.info.keys():
self.getTypeProblem(filename)
# IG: Here change to accommodate the new multiclass label format
if self.info['task'] == 'multilabel.classification':
label = data_io.data(filename)
elif self.info['task'] == 'multiclass.classification':
label = data_converter.convert_to_num(data_io.data(filename))
else:
label = np.ravel(data_io.data(filename)) # get a column vector
#label = np.array([np.ravel(data_io.data(filename))]).transpose() # get a column vector
if self.use_pickle:
with open (os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"), "wb") as pickle_file:
vprint (verbose, "Saving pickle file : " + os.path.join (self.tmp_dir, os.path.basename(filename) + ".pickle"))
p = pickle.Pickler(pickle_file)
p.fast = True
p.dump(label)
end = time.time()
if verbose: print( "[+] Success in %5.2f sec" % (end - start))
return label
def write_catastrophe_record(self, *args, **kwargs):
if self.catastrophe_coordinator is not None:
if self.catastrophe_coordinator.should_log():
record = CatastropheRecord(*args, **kwargs)
filename = self.catastrophe_coordinator.get_filename()
with open(filename, "wb") as f:
pickler = pickle.Pickler(f)
pickler.dump(record)
self.catastrophe_coordinator.step()
def write_block_record(self, *args, **kwargs):
if self.block_coordinator is not None:
if self.block_coordinator.should_log():
record = BlockRecord(*args, **kwargs)
filename = self.block_coordinator.get_filename()
with open(filename, "wb") as f:
pickler = pickle.Pickler(f)
pickler.dump(record)
self.block_coordinator.step()
def save_episode(episode_path, episode):
with gzip.open(episode_path, "wb") as f:
pickler = pickle.Pickler(f)
pickler.dump(episode)