def summary(self):
"""
Print the summary of the Process model.
:return: None
"""
with pd.option_context("precision", self.options["precision"]):
full_model = self.outcome_models[self.iv]
m_models = [self.outcome_models.get(med_name) for med_name in self.mediators]
if self.options["detail"]:
print("\n***************************** OUTCOME MODELS ****************************\n")
print(full_model)
print("\n-------------------------------------------------------------------------\n")
for med_model in m_models:
print(med_model)
print("\n-------------------------------------------------------------------------\n")
if self.indirect_model:
print("\n********************** DIRECT AND INDIRECT EFFECTS **********************\n")
print(self.direct_model)
print(self.indirect_model)
else:
print("\n********************** CONDITIONAL EFFECTS **********************\n")
print(self.direct_model)
python类option_context()的实例源码
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 26
收藏 0
点赞 0
评论 0
def test_show_null_counts(self):
df = DataFrame(1, columns=range(10), index=range(10))
df.iloc[1, 1] = np.nan
def check(null_counts, result):
buf = StringIO()
df.info(buf=buf, null_counts=null_counts)
self.assertTrue(('non-null' in buf.getvalue()) is result)
with option_context('display.max_info_rows', 20,
'display.max_info_columns', 20):
check(None, True)
check(True, True)
check(False, False)
with option_context('display.max_info_rows', 5,
'display.max_info_columns', 5):
check(None, False)
check(True, False)
check(False, False)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_repr_truncation(self):
max_len = 20
with option_context("display.max_colwidth", max_len):
df = DataFrame({'A': np.random.randn(10),
'B': [tm.rands(np.random.randint(
max_len - 1, max_len + 1)) for i in range(10)
]})
r = repr(df)
r = r[r.find('\n') + 1:]
adj = fmt._get_adjustment()
for line, value in lzip(r.split('\n'), df['B']):
if adj.len(value) + 1 > max_len:
self.assertIn('...', line)
else:
self.assertNotIn('...', line)
with option_context("display.max_colwidth", 999999):
self.assertNotIn('...', repr(df))
with option_context("display.max_colwidth", max_len + 2):
self.assertNotIn('...', repr(df))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_expand_frame_repr(self):
df_small = DataFrame('hello', [0], [0])
df_wide = DataFrame('hello', [0], lrange(10))
df_tall = DataFrame('hello', lrange(30), lrange(5))
with option_context('mode.sim_interactive', True):
with option_context('display.max_columns', 10, 'display.width', 20,
'display.max_rows', 20,
'display.show_dimensions', True):
with option_context('display.expand_frame_repr', True):
self.assertFalse(has_truncated_repr(df_small))
self.assertFalse(has_expanded_repr(df_small))
self.assertFalse(has_truncated_repr(df_wide))
self.assertTrue(has_expanded_repr(df_wide))
self.assertTrue(has_vertically_truncated_repr(df_tall))
self.assertTrue(has_expanded_repr(df_tall))
with option_context('display.expand_frame_repr', False):
self.assertFalse(has_truncated_repr(df_small))
self.assertFalse(has_expanded_repr(df_small))
self.assertFalse(has_horizontally_truncated_repr(df_wide))
self.assertFalse(has_expanded_repr(df_wide))
self.assertTrue(has_vertically_truncated_repr(df_tall))
self.assertFalse(has_expanded_repr(df_tall))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 35
收藏 0
点赞 0
评论 0
def test_str_max_colwidth(self):
# GH 7856
df = pd.DataFrame([{'a': 'foo',
'b': 'bar',
'c': 'uncomfortably long line with lots of stuff',
'd': 1}, {'a': 'foo',
'b': 'bar',
'c': 'stuff',
'd': 1}])
df.set_index(['a', 'b', 'c'])
self.assertTrue(
str(df) ==
' a b c d\n'
'0 foo bar uncomfortably long line with lots of stuff 1\n'
'1 foo bar stuff 1')
with option_context('max_colwidth', 20):
self.assertTrue(str(df) == ' a b c d\n'
'0 foo bar uncomfortably lo... 1\n'
'1 foo bar stuff 1')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def test_wide_repr(self):
with option_context('mode.sim_interactive', True,
'display.show_dimensions', True):
max_cols = get_option('display.max_columns')
df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
assert "10 rows x %d columns" % (max_cols - 1) in rep_str
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
self.assertNotEqual(rep_str, wide_repr)
with option_context('display.width', 120):
wider_repr = repr(df)
self.assertTrue(len(wider_repr) < len(wide_repr))
reset_option('display.expand_frame_repr')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def test_wide_repr_named(self):
with option_context('mode.sim_interactive', True):
max_cols = get_option('display.max_columns')
df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
df.index.name = 'DataFrame Index'
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
self.assertNotEqual(rep_str, wide_repr)
with option_context('display.width', 150):
wider_repr = repr(df)
self.assertTrue(len(wider_repr) < len(wide_repr))
for line in wide_repr.splitlines()[1::13]:
self.assertIn('DataFrame Index', line)
reset_option('display.expand_frame_repr')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def test_wide_repr_multiindex_cols(self):
with option_context('mode.sim_interactive', True):
max_cols = get_option('display.max_columns')
midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10)))
mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols
- 1)))
df = DataFrame(tm.rands_array(25, (10, max_cols - 1)),
index=midx, columns=mcols)
df.index.names = ['Level 0', 'Level 1']
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
self.assertNotEqual(rep_str, wide_repr)
with option_context('display.width', 150):
wider_repr = repr(df)
self.assertTrue(len(wider_repr) < len(wide_repr))
reset_option('display.expand_frame_repr')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def test_show_dimensions(self):
df = DataFrame(123, lrange(10, 15), lrange(30))
with option_context('display.max_rows', 10, 'display.max_columns', 40,
'display.width', 500, 'display.expand_frame_repr',
'info', 'display.show_dimensions', True):
self.assertTrue('5 rows' in str(df))
self.assertTrue('5 rows' in df._repr_html_())
with option_context('display.max_rows', 10, 'display.max_columns', 40,
'display.width', 500, 'display.expand_frame_repr',
'info', 'display.show_dimensions', False):
self.assertFalse('5 rows' in str(df))
self.assertFalse('5 rows' in df._repr_html_())
with option_context('display.max_rows', 2, 'display.max_columns', 2,
'display.width', 500, 'display.expand_frame_repr',
'info', 'display.show_dimensions', 'truncate'):
self.assertTrue('5 rows' in str(df))
self.assertTrue('5 rows' in df._repr_html_())
with option_context('display.max_rows', 10, 'display.max_columns', 40,
'display.width', 500, 'display.expand_frame_repr',
'info', 'display.show_dimensions', 'truncate'):
self.assertFalse('5 rows' in str(df))
self.assertFalse('5 rows' in df._repr_html_())
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def test_info_repr(self):
max_rows = get_option('display.max_rows')
max_cols = get_option('display.max_columns')
# Long
h, w = max_rows + 1, max_cols - 1
df = DataFrame(dict((k, np.arange(1, 1 + h)) for k in np.arange(w)))
assert has_vertically_truncated_repr(df)
with option_context('display.large_repr', 'info'):
assert has_info_repr(df)
# Wide
h, w = max_rows - 1, max_cols + 1
df = DataFrame(dict((k, np.arange(1, 1 + h)) for k in np.arange(w)))
assert has_horizontally_truncated_repr(df)
with option_context('display.large_repr', 'info'):
assert has_info_repr(df)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def test_info_repr_html(self):
max_rows = get_option('display.max_rows')
max_cols = get_option('display.max_columns')
# Long
h, w = max_rows + 1, max_cols - 1
df = DataFrame(dict((k, np.arange(1, 1 + h)) for k in np.arange(w)))
assert r'<class' not in df._repr_html_()
with option_context('display.large_repr', 'info'):
assert r'<class' in df._repr_html_()
# Wide
h, w = max_rows - 1, max_cols + 1
df = DataFrame(dict((k, np.arange(1, 1 + h)) for k in np.arange(w)))
assert '<class' not in df._repr_html_()
with option_context('display.large_repr', 'info'):
assert '<class' in df._repr_html_()
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 40
收藏 0
点赞 0
评论 0
def test_format_explicit(self):
test_sers = self.gen_test_series()
with option_context("display.max_rows", 4):
res = repr(test_sers['onel'])
exp = '0 a\n1 a\n ..\n98 a\n99 a\ndtype: object'
self.assertEqual(exp, res)
res = repr(test_sers['twol'])
exp = ('0 ab\n1 ab\n ..\n98 ab\n99 ab\ndtype:'
' object')
self.assertEqual(exp, res)
res = repr(test_sers['asc'])
exp = ('0 a\n1 ab\n ... \n4 abcde\n5'
' abcdef\ndtype: object')
self.assertEqual(exp, res)
res = repr(test_sers['desc'])
exp = ('5 abcdef\n4 abcde\n ... \n1 ab\n0'
' a\ndtype: object')
self.assertEqual(exp, res)
def df_to_html(df, border=0, classes=('table', 'table-striped', 'table-hover'),
**kwargs):
"""Convert a dataframe to HTML without truncating contents.
pandas will truncate cell contents that exceed 50 characters by default.
Use this function to avoid this truncation behavior.
This function uses different default parameters than `DataFrame.to_html` to
give uniform styling to HTML tables that are compatible with q2template
themes. These parameters can be overridden, and they (along with any other
parameters) will be passed through to `DataFrame.to_html`.
Parameters
----------
df : pd.DataFrame
DataFrame to convert to HTML.
kwargs : dict
Parameters passed through to `pd.DataFrame.to_html`.
Returns
-------
str
DataFrame converted to HTML.
References
----------
.. [1] https://stackoverflow.com/q/26277757/3776794
.. [2] https://github.com/pandas-dev/pandas/issues/1852
"""
with pd.option_context('display.max_colwidth', -1):
return df.to_html(border=border, classes=classes, **kwargs)
test_base.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_representation(self):
idx = []
idx.append(DatetimeIndex([], freq='D'))
idx.append(DatetimeIndex(['2011-01-01'], freq='D'))
idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D'))
idx.append(DatetimeIndex(
['2011-01-01', '2011-01-02', '2011-01-03'], freq='D'))
idx.append(DatetimeIndex(
['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'
], freq='H', tz='Asia/Tokyo'))
idx.append(DatetimeIndex(
['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern'))
idx.append(DatetimeIndex(
['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC'))
exp = []
exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""")
exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', "
"freq='D')")
exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], "
"dtype='datetime64[ns]', freq='D')")
exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], "
"dtype='datetime64[ns]', freq='D')")
exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', "
"'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']"
", dtype='datetime64[ns, Asia/Tokyo]', freq='H')")
exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', "
"'2011-01-01 10:00:00-05:00', 'NaT'], "
"dtype='datetime64[ns, US/Eastern]', freq=None)")
exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', "
"'2011-01-01 10:00:00+00:00', 'NaT'], "
"dtype='datetime64[ns, UTC]', freq=None)""")
with pd.option_context('display.width', 300):
for indx, expected in zip(idx, exp):
for func in ['__repr__', '__unicode__', '__str__']:
result = getattr(indx, func)()
self.assertEqual(result, expected)
test_base.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def test_representation(self):
idx1 = TimedeltaIndex([], freq='D')
idx2 = TimedeltaIndex(['1 days'], freq='D')
idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D')
idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D')
idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days'])
exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')"""
exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', "
"freq='D')")
exp3 = ("TimedeltaIndex(['1 days', '2 days'], "
"dtype='timedelta64[ns]', freq='D')")
exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], "
"dtype='timedelta64[ns]', freq='D')")
exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', "
"'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)")
with pd.option_context('display.width', 300):
for idx, expected in zip([idx1, idx2, idx3, idx4, idx5],
[exp1, exp2, exp3, exp4, exp5]):
for func in ['__repr__', '__unicode__', '__str__']:
result = getattr(idx, func)()
self.assertEqual(result, expected)
test_base.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def test_representation_to_series(self):
idx1 = TimedeltaIndex([], freq='D')
idx2 = TimedeltaIndex(['1 days'], freq='D')
idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D')
idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D')
idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days'])
exp1 = """Series([], dtype: timedelta64[ns])"""
exp2 = """0 1 days
dtype: timedelta64[ns]"""
exp3 = """0 1 days
1 2 days
dtype: timedelta64[ns]"""
exp4 = """0 1 days
1 2 days
2 3 days
dtype: timedelta64[ns]"""
exp5 = """0 1 days 00:00:01
1 2 days 00:00:00
2 3 days 00:00:00
dtype: timedelta64[ns]"""
with pd.option_context('display.width', 300):
for idx, expected in zip([idx1, idx2, idx3, idx4, idx5],
[exp1, exp2, exp3, exp4, exp5]):
result = repr(pd.Series(idx))
self.assertEqual(result, expected)
common.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def test_repr_max_seq_item_setting(self):
# GH10182
idx = self.create_index()
idx = idx.repeat(50)
with pd.option_context("display.max_seq_items", None):
repr(idx)
self.assertFalse('...' in str(idx))
test_missing.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 37
收藏 0
点赞 0
评论 0
def test_isnull_for_inf(self):
s = Series(['a', np.inf, np.nan, 1.0])
with pd.option_context('mode.use_inf_as_null', True):
r = s.isnull()
dr = s.dropna()
e = Series([False, True, True, False])
de = Series(['a', 1.0], index=[0, 3])
tm.assert_series_equal(r, e)
tm.assert_series_equal(dr, de)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_repr_chop_threshold(self):
df = DataFrame([[0.1, 0.5], [0.5, -0.1]])
pd.reset_option("display.chop_threshold") # default None
self.assertEqual(repr(df), ' 0 1\n0 0.1 0.5\n1 0.5 -0.1')
with option_context("display.chop_threshold", 0.2):
self.assertEqual(repr(df), ' 0 1\n0 0.0 0.5\n1 0.5 0.0')
with option_context("display.chop_threshold", 0.6):
self.assertEqual(repr(df), ' 0 1\n0 0.0 0.0\n1 0.0 0.0')
with option_context("display.chop_threshold", None):
self.assertEqual(repr(df), ' 0 1\n0 0.1 0.5\n1 0.5 -0.1')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_repr_obeys_max_seq_limit(self):
with option_context("display.max_seq_items", 2000):
self.assertTrue(len(com.pprint_thing(lrange(1000))) > 1000)
with option_context("display.max_seq_items", 5):
self.assertTrue(len(com.pprint_thing(lrange(1000))) < 100)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def test_repr_non_interactive(self):
# in non interactive mode, there can be no dependency on the
# result of terminal auto size detection
df = DataFrame('hello', lrange(1000), lrange(5))
with option_context('mode.sim_interactive', False, 'display.width', 0,
'display.height', 0, 'display.max_rows', 5000):
self.assertFalse(has_truncated_repr(df))
self.assertFalse(has_expanded_repr(df))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def test_auto_detect(self):
term_width, term_height = get_terminal_size()
fac = 1.05 # Arbitrary large factor to exceed term widht
cols = range(int(term_width * fac))
index = range(10)
df = DataFrame(index=index, columns=cols)
with option_context('mode.sim_interactive', True):
with option_context('max_rows', None):
with option_context('max_columns', None):
# Wrap around with None
self.assertTrue(has_expanded_repr(df))
with option_context('max_rows', 0):
with option_context('max_columns', 0):
# Truncate with auto detection.
self.assertTrue(has_horizontally_truncated_repr(df))
index = range(int(term_height * fac))
df = DataFrame(index=index, columns=cols)
with option_context('max_rows', 0):
with option_context('max_columns', None):
# Wrap around with None
self.assertTrue(has_expanded_repr(df))
# Truncate vertically
self.assertTrue(has_vertically_truncated_repr(df))
with option_context('max_rows', None):
with option_context('max_columns', 0):
self.assertTrue(has_horizontally_truncated_repr(df))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 35
收藏 0
点赞 0
评论 0
def test_to_string_truncate_indices(self):
for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex,
tm.makeDateIndex, tm.makePeriodIndex]:
for column in [tm.makeStringIndex]:
for h in [10, 20]:
for w in [10, 20]:
with option_context("display.expand_frame_repr",
False):
df = DataFrame(index=index(h), columns=column(w))
with option_context("display.max_rows", 15):
if h == 20:
self.assertTrue(
has_vertically_truncated_repr(df))
else:
self.assertFalse(
has_vertically_truncated_repr(df))
with option_context("display.max_columns", 15):
if w == 20:
self.assertTrue(
has_horizontally_truncated_repr(df))
else:
self.assertFalse(
has_horizontally_truncated_repr(df))
with option_context("display.max_rows", 15,
"display.max_columns", 15):
if h == 20 and w == 20:
self.assertTrue(has_doubly_truncated_repr(
df))
else:
self.assertFalse(has_doubly_truncated_repr(
df))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 39
收藏 0
点赞 0
评论 0
def test_to_string_truncate_multilevel(self):
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
df = DataFrame(index=arrays, columns=arrays)
with option_context("display.max_rows", 7, "display.max_columns", 7):
self.assertTrue(has_doubly_truncated_repr(df))
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 34
收藏 0
点赞 0
评论 0
def test_wide_repr_wide_columns(self):
with option_context('mode.sim_interactive', True):
df = DataFrame(randn(5, 3), columns=['a' * 90, 'b' * 90, 'c' * 90])
rep_str = repr(df)
self.assertEqual(len(rep_str.splitlines()), 20)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def test_wide_repr_unicode(self):
with option_context('mode.sim_interactive', True):
max_cols = get_option('display.max_columns')
df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)))
set_option('display.expand_frame_repr', False)
rep_str = repr(df)
set_option('display.expand_frame_repr', True)
wide_repr = repr(df)
self.assertNotEqual(rep_str, wide_repr)
with option_context('display.width', 150):
wider_repr = repr(df)
self.assertTrue(len(wider_repr) < len(wide_repr))
reset_option('display.expand_frame_repr')
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def test_wide_repr_wide_long_columns(self):
with option_context('mode.sim_interactive', True):
df = DataFrame({'a': ['a' * 30, 'b' * 30],
'b': ['c' * 70, 'd' * 80]})
result = repr(df)
self.assertTrue('ccccc' in result)
self.assertTrue('ddddd' in result)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def test_max_multi_index_display(self):
# GH 7101
# doc example (indexing.rst)
# multi-index
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = MultiIndex.from_tuples(tuples, names=['first', 'second'])
s = Series(randn(8), index=index)
with option_context("display.max_rows", 10):
self.assertEqual(len(str(s).split('\n')), 10)
with option_context("display.max_rows", 3):
self.assertEqual(len(str(s).split('\n')), 5)
with option_context("display.max_rows", 2):
self.assertEqual(len(str(s).split('\n')), 5)
with option_context("display.max_rows", 1):
self.assertEqual(len(str(s).split('\n')), 4)
with option_context("display.max_rows", 0):
self.assertEqual(len(str(s).split('\n')), 10)
# index
s = Series(randn(8), None)
with option_context("display.max_rows", 10):
self.assertEqual(len(str(s).split('\n')), 9)
with option_context("display.max_rows", 3):
self.assertEqual(len(str(s).split('\n')), 4)
with option_context("display.max_rows", 2):
self.assertEqual(len(str(s).split('\n')), 4)
with option_context("display.max_rows", 1):
self.assertEqual(len(str(s).split('\n')), 3)
with option_context("display.max_rows", 0):
self.assertEqual(len(str(s).split('\n')), 9)
# Make sure #8532 is fixed
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 37
收藏 0
点赞 0
评论 0
def test_consistent_format(self):
s = pd.Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9999, 1, 1] * 10)
with option_context("display.max_rows", 10):
res = repr(s)
exp = ('0 1.0000\n1 1.0000\n2 1.0000\n3 '
'1.0000\n4 1.0000\n ... \n125 '
'1.0000\n126 1.0000\n127 0.9999\n128 '
'1.0000\n129 1.0000\ndtype: float64')
self.assertEqual(res, exp)
test_format.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def chck_ncols(self, s):
with option_context("display.max_rows", 10):
res = repr(s)
lines = res.split('\n')
lines = [line for line in repr(s).split('\n')
if not re.match('[^\.]*\.+', line)][:-1]
ncolsizes = len(set(len(line.strip()) for line in lines))
self.assertEqual(ncolsizes, 1)