def test_pivot_dtaccessor(self):
# GH 8103
dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00',
'2011-07-19 07:00:00', '2011-07-19 08:00:00',
'2011-07-19 09:00:00']
dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00',
'2013-01-01 15:00:00',
'2013-02-01 15:00:00', '2013-02-01 15:00:00',
'2013-02-01 15:00:00']
df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'],
'dt1': dates1, 'dt2': dates2,
'value1': np.arange(6, dtype='int64'),
'value2': [1, 2] * 3})
df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d))
df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d))
result = pivot_table(df, index='label', columns=df['dt1'].dt.hour,
values='value1')
exp_idx = Index(['a', 'b'], name='label')
expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
index=exp_idx,
columns=Index([7, 8, 9], name='dt1'))
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=df['dt2'].dt.month,
columns=df['dt1'].dt.hour,
values='value1')
expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]},
index=Index([1, 2], name='dt2'),
columns=Index([7, 8, 9], name='dt1'))
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=df['dt2'].dt.year.values,
columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
values='value1')
exp_col = MultiIndex.from_arrays(
[[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2'])
expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'),
index=[2013], columns=exp_col)
tm.assert_frame_equal(result, expected)
result = pivot_table(df, index=np.array(['X', 'X', 'X',
'X', 'Y', 'Y']),
columns=[df['dt1'].dt.hour, df['dt2'].dt.month],
values='value1')
expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan],
[np.nan, np.nan, np.nan,
4, np.nan, 5]]),
index=['X', 'Y'], columns=exp_col)
tm.assert_frame_equal(result, expected)
python类pivot_table()的实例源码
test_pivot.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def plot_doy_heatmap(data, cmap='nipy_spectral', vmin=None, vmax=None,
overlay=None, title=None, figsize=(7.0, 3.0)):
"""
Create a day-of-year (X-axis) vs. time-of-day (Y-axis) heatmap.
Parameters
----------
data : pandas DataFrame or pandas Series
Data (single column), indexed by time
cmap : string (optional)
Colomap, default = nipy_spectral
vmin : float (optional)
Colomap minimum, default = None (autoscale)
vmax : float (optional)
Colomap maximum, default = None (autoscale)
overlay : pandas DataFrame (optional)
Data to overlay on the heatmap.
Time index should be in day-of-year (X-axis)
Values should be in time-of-day in minutes (Y-axis)
title : string (optional)
Title, default = None
figsize : tuple (optional)
Figure size, default = (7.0, 3.0)
"""
if type(data) is pd.core.series.Series:
data = data.to_frame()
# Convert data to a pivot table
col_name = data.columns[0]
data['X'] = data.index.dayofyear
data['Y'] = data.index.hour*60 + \
data.index.minute + \
data.index.second/60 + \
data.index.microsecond/(60*1000000.0)
piv = pd.pivot_table(data,values=col_name,index=['Y'],columns=['X'],fill_value=np.NaN)
# Create the heatmap
plt.figure(figsize = figsize)
fig, ax = plt.subplots(figsize=figsize)
im = ax.imshow(piv, cmap=cmap, aspect='auto', vmin=vmin, vmax=vmax,
extent=[data['X'].min()-0.5,data['X'].max()+0.5,
data['Y'].max()-0.5,data['Y'].min()+0.5])
fig.colorbar(im, ax=ax)
# Add overlay
if type(overlay) is pd.core.frame.DataFrame:
overlay.plot(ax=ax)
# Add title and labels
if title:
ax.set_title(title)
ax.set_xlabel("Day of the year")
ax.set_ylabel("Time of day (minutes)")
plt.tight_layout()