python类ExcelWriter()的实例源码

export.py 文件源码 项目:pymongo-schema 作者: pajachiet 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def write_data(self, file_descr):
        """
        Use dataframe to_excel to write into file_descr (filename) - open first if file exists.
        """
        if os.path.isfile(file_descr):
            print(file_descr, 'exists')
            # Solution to keep existing data
            book = load_workbook(file_descr)
            writer = pd.ExcelWriter(file_descr, engine='openpyxl')
            writer.book = book
            writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
            self.data_df.to_excel(writer, sheet_name='Mongo_Schema', index=True,
                                  float_format='%.2f')
            writer.save()
        else:
            self.data_df.to_excel(file_descr, sheet_name='Mongo_Schema', index=True,
                                  float_format='%.2f')
io.py 文件源码 项目:skan 作者: jni 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def write_excel(filename, **kwargs):
    """Write data tables to an Excel file, using kwarg names as sheet names.

    Parameters
    ----------
    filename : str
        The filename to write to.
    kwargs : dict
        Mapping from sheet names to data.
    """
    writer = pd.ExcelWriter(filename)
    for sheet_name, obj in kwargs.items():
        if isinstance(obj, dict):
            obj = _params_dict_to_dataframe(obj)
        if isinstance(obj, pd.DataFrame):
            obj.to_excel(writer, sheet_name=sheet_name)
    writer.save()
    writer.close()
mappers.py 文件源码 项目:xl_link 作者: 0Hughman0 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def write_frame(f, excel_writer, to_excel_args=None):
    """
    Write a Pandas DataFrame to excel by calling to_excel, returning an XLMap, that can be used to determine
    the position of parts of f, using pandas indexing.

    Parameters
    ----------
    f : DataFrame
        Frame to write to excel
    excel_writer : str or ExcelWriter
        Path or existing Excel Writer to use to write frame
    to_excel_args : dict
        Additional arguments to pass to DataFrame.to_excel, see docs for DataFrame.to_excel

    Returns
    -------
    XLMap :
        Mapping that corresponds to the position in the spreadsheet that frame was written to.
    """
    xlf = XLDataFrame(f)

    return xlf.to_excel(excel_writer, **to_excel_args)
dataFrameViewer.py 文件源码 项目:dfViewer 作者: sterry24 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def writeExcelOutput(self,table):
        if isinstance(table,QTabWidget):
            filename = table.currentWidget().model()._filename
            writer = pd.ExcelWriter(filename, engine='xlsxwriter')

            for i in range(table.count()):
                data=table.widget(i)
                sheetname=table.tabText(i)
                data.model()._df.to_excel(writer, sheet_name=sheetname,index=False)
                data.model()._dirty = False
            writer.save()
        if isinstance(table,QTableView):
            filename = table.model()._filename
            writer = pd.ExcelWriter(filename, engine='xlsxwriter')
            table.model()._df.to_excel(writer, sheet_name='Sheet 1',index=False)
            table.model()._dirty = False
            writer.save()
shixin_zhixing_defend365.py 文件源码 项目:forward 作者: yajun0601 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def export_pingan_trust16():
    issuers = pd.read_excel('../peace/??????.xlsx',sheetname=[0], header = 0)[0]
    writer = pd.ExcelWriter('time_searies.xlsx')
    for company in issuers['name']:
        print(company)
        query = db.pingan_total.find({"name":company},{'_id':0,'name':0}).sort("rptDate" , 1)
        data = pd.DataFrame(list(query))
        data = data[ ['??','??','??','??','??', '??', '??','??', 'rptDate']]
        data = data.rename(columns={"??":"???????","??":"????","??":"?????","??":"???????"})        
        data.to_excel(writer, sheet_name=company)

    writer.save()

#db = client.companies
#collection = db.total_nums
#insert_record = json.loads(result.to_json(orient='records'))
#ret = db.total_nums.insert_many(insert_record)
# ????
#collection = db.
#df = sued_in_arrears()
#insert_record = json.loads(df.to_json(orient='records'))
#ret = db.collection.insert_many(insert_record)
results_analysis.py 文件源码 项目:syracuse_public 作者: dssg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def gen_decile_table(model_top_precision, valid_df): 
    """ Creates the decile table """

    valid_top_precision_df = valid_df[valid_df.model_id == model_top_precision]

    valid_dec_sort_df = valid_top_precision_df.sort_values('y_pred_proba', ascending = False)
    total_breaks = valid_dec_sort_df.y_true.sum()
    total_blocks = len(valid_dec_sort_df)
    dec_breaks = total_breaks / 10
    dec_blocks =  total_blocks / 10

    decile_df = pd.DataFrame(columns=('model_id','Decile', 'No_of_blocks','risk_mul', 'Actual_breaks', 'Precision_in_decile', 'Recall_overall', 'Lift_above_random'))
    for i in range(10):
        break_sum = valid_dec_sort_df.y_true[i*dec_blocks:(i+1)*dec_blocks].sum()
        risk_mul = valid_dec_sort_df.y_pred_proba[i*dec_blocks:(i+1)*dec_blocks].sum()
        lift = break_sum / dec_breaks
        conversion = break_sum *100 / dec_blocks
        recall = break_sum *100 / total_breaks
        decile_df.loc[len(decile_df)] = [model_top_precision,i+1,dec_blocks,risk_mul ,break_sum, conversion, recall, lift]
    decile_df.loc[len(decile_df)] = ['-', 'Total',total_blocks, '_' ,total_breaks, total_breaks/total_blocks, '-', '-']

    writer = pd.ExcelWriter('decile_table.xlsx', engine='xlsxwriter')
    decile_df.to_excel(writer, sheet_name='Sheet1')
trader.py 文件源码 项目:bigfishtrader 作者: xingetouzi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def save_performance(self, *args):
        w = pd.ExcelWriter("performance&%s.xls" % datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))

        def iter_save(dict_like, name=None):
            for key, data in dict_like.items():
                table = key if not name else name + "_" + key
                if isinstance(data, dict):
                    iter_save(data, key)
                    continue
                elif isinstance(data, pd.Series):
                    data = pd.DataFrame(data)

                try:
                    data.to_excel(w, table)
                except Exception as e:
                    print(e.message)
                    print("%s can not be saved as .xls file" % table)
                    print(data)

        iter_save(self.output(*args))
        w.save()
usage_df.py 文件源码 项目:function-pipe 作者: InvestmentSystems 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def merge_gender_data(**kwargs):
        pni = kwargs[fpn.PN_INPUT]
        # get index from source data dict
        df = pd.DataFrame(index=pni.data_dict.keys())
        for k, v in kwargs.items():
            if k not in fpn.PIPE_NODE_KWARGS:
                for gender in ('M', 'F'):
                    df[k + '_' + gender] = v[gender]
        return df


    #@fpn.pipe_node
    #def write_xlsx(**kwargs):
        #pni = kwargs[fpn.PN_INPUT]
        #xlsx_fp = os.path.join(pni.output_dir, 'output.xlsx')
        #xlsx = pd.ExcelWriter(xlsx_fp)
        #for k, df in pni.store_items():
            #df.to_excel(xlsx, k)
        #xlsx.save()
        #return xlsx_fp
usage_df.py 文件源码 项目:function-pipe 作者: InvestmentSystems 项目源码 文件源码 阅读 506 收藏 0 点赞 0 评论 0
def approach_pipe_4b():

    a = (PN4.name_count_per_year(lambda n: n.lower().startswith('lesl'))
            | PN4.percent | fpn.store('lesl'))

    b = (PN4.name_count_per_year(lambda n: n.lower().startswith('dana'))
            | PN4.percent | fpn.store('dana'))

    f = (PN4.merge_gender_data(lesl=a, dana=b)
            | PN4.year_range(1920, 2000)
            | fpn.store('merged') * 100
            | PN4.plot('gender.png')
            | PN4.open_plot)

    pni = PN4.PNI('/tmp')
    f[pni]


    xlsx_fp = os.path.join(pni.output_dir, 'output.xlsx')
    xlsx = pd.ExcelWriter(xlsx_fp)
    for k, df in pni.store_items():
        df.to_excel(xlsx, k)
    xlsx.save()

    os.system('libreoffice --calc ' + xlsx_fp)
numpy_array.py 文件源码 项目:WaNN 作者: TeoZosa 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def GenerateXLSX(X, which=1):
    columns = []
    # generate column names
    for dimension in ['White', 'Black', 'Player', 'Opponent', 'Empty']:
        for i in range(1, 9):
            for char in 'abcdefgh':
                position = 'Position: ' + char + str(i) + ' (' + dimension + ')'
                columns.append(position)
    columns.append('White\'s Move Preceded This State')
    columns.append('Outcome')
    frame = pd.DataFrame(X, columns=columns)
    if which==1:
        writer = pd.ExcelWriter(r'/Users/TeofiloZosa/PycharmProjects/BreakthroughANN/value_net_rank_binary/NPDataSets/WBPOE/UnshuffledBinaryFeaturePlanesDataset1.xlsx', engine='xlsxwriter')
    else:
        writer = pd.ExcelWriter(r'/Users/TeofiloZosa/PycharmProjects/BreakthroughANN/value_net_rank_binary/NPDataSets/WBPOE/UnshuffledBinaryFeaturePlanesDataset2.xlsx', engine='xlsxwriter')

    frame.to_excel(writer, 'Sheet1')
    writer.save()
tests.py 文件源码 项目:autoupdate_blacklists 作者: elluscinia 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def parse_statistics(logfile):
    xl = pd.ExcelFile(logfile)
    df = xl.parse("Sheet")
    df = df.sort_values(by='Line Numbers')

    writer = pd.ExcelWriter(logfile)
    df.to_excel(writer, sheet_name='Sheet', index=False)
    writer.save()

    wb = openpyxl.load_workbook(logfile)
    ws = wb.active

    row_count = ws.max_row
    column_count = ws.max_column

    chart = ScatterChart()
    chart.title = "Time upload domain names"
    chart.style = 13
    chart.x_axis.title = "Line numbers"
    chart.y_axis.title = "Time, sec"

    xvalues = Reference(ws, min_col=1, min_row=2, max_row=row_count)
    color_choice = ['3F888F', 'D24D57']
    for i in range(2, column_count + 1):
        values = Reference(ws, min_col=i, min_row=1, max_row=row_count)
        series = Series(values, xvalues, title_from_data=True)
        series.marker.symbol = "diamond"
        series.graphicalProperties.line.solidFill = color_choice[i-2]
        series.marker.graphicalProperties.line.solidFill = color_choice[i-2]
        series.marker.graphicalProperties.solidFill = color_choice[i-2]
        series.graphicalProperties.line.width = 20000
        chart.series.append(series)

    chart.legend.legendPos = 'b'
    ws.add_chart(chart)
    wb.save(logfile)
markov_stock_analysis v2-4.py 文件源码 项目:markov_stock_analysis 作者: nb5hd 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def compare_securities_2x2(sec_list, weeks, thresh=0.0):
    """
    Returns an excel sheet with stock name, this week's percentage change, mean of next week's predicted
    percentage change, and standard deviation of next week's predicted percentage change

    :param sec_list: <list> with all the security names
    :param weeks: <int> Number of weeks since the most recent recorded date (cannot use years/months because months and
    years have varying quantities of days; Numpy requires constancy in datetime arithmetic)
    :param thresh: <float> divides percentage changes into two categories (>= and <); applies to each security
    """
    sec_dict = {}
    for name in sec_list:
        sec_info = predict_percentage_change(name, weeks=weeks, threshold=thresh)
        sec_dict[name] = sec_info
    sec_df = pd.DataFrame(sec_dict).transpose()
    sec_df.columns = ['Last % Change', "Mean Predicted % Change", "Standard Deviation " +
                      "Predicted % Change"]
    sec_df= sec_df.sort_values(by=["Mean Predicted % Change"], ascending=True)
    writer = pd.ExcelWriter('output.xlsx')
    sec_df.to_excel(writer, 'Sheet1')
    writer.save()


#compare_securities_2x2(["BAC", "AAPL", "GOOG", "T"], weeks=26, thresh=2.0)
generate_stock_report.py 文件源码 项目:chinese-stock-Financial-Index 作者: lfh2016 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def save_xls(self, dframe):  # ???????????excel?????sheet
        xls_path = os.path.join(current_folder, self.name + '.xlsx')
        if os.path.exists(xls_path):  # excel ??????
            book = load_workbook(xls_path)
            writer = pd.ExcelWriter(xls_path, engine='openpyxl')
            writer.book = book
            writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
            dframe.to_excel(writer, self.name)
            writer.save()
        else:  # ??????
            writer = ExcelWriter(xls_path)
            dframe.to_excel(writer, self.name)
            writer.save()
functions.py 文件源码 项目:seniority_list 作者: rubydatasystems 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def anon_pay_table(case,
                   proportional=True,
                   mult=1.0,):
    '''Anonymize the "rates" worksheet of the "pay_tables.xlsx" input file.
    The rates may be proportionally adjusted (larger or smaller) or
    disproportionally adjusted with a fixed algorithm.
    A copy of the original excel file is copied and saved as
    "pay_tables_orig.xlsx".
    All modifications are inplace.
    inputs
        case (string)
            the case name
        proportional (boolean)
            if True, use the mult input to increase or decrease all of the
            "rates" worksheet pay data proportionally.  If False, use a fixed
            algorithm to disproportionally adjust the pay rates.
        mult (integer or float)
            if the proportional input is True, multiply all pay rate values
            by this input value
    '''
    inplace = True

    path, d = copy_excel_file(case, 'pay_tables', return_path_and_df=True)
    df = d['rates']
    anon_pay(df,
             proportional=proportional,
             mult=mult,
             inplace=inplace)
    d['rates'] = df

    with pd.ExcelWriter(path, engine='xlsxwriter') as writer:

        for ws_name, df_sheet in d.items():
            df_sheet.to_excel(writer, sheet_name=ws_name)

    print('\nanon_pay_table routine complete')
tushare_function.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def save_excel():
    df = ts.get_today_all()
    df.to_excel('1.xls', sheet_name='all_stock')
    df2 = ts.get_hist_data('300333')
    df2.to_excel('1.xls', sheet_name='basic_info')
    df.ExcelWriter
    out = pd.ExcelWriter("2.xls")
    df.to_excel()
excel.py 文件源码 项目:financial_life 作者: MartinPyka 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def report(simulation, filename='report.xls'):
    """ This function generates a report as an excel sheet.

    simulation      the simualation that should be exported to excel
    filename        filename of the excel file
    """

    writer = pd.ExcelWriter(filename)
    for account in simulation.accounts:
        df = account.report.as_df()
        df.to_excel(writer, sheet_name=account.name)
    writer.save()
_classif.py 文件源码 项目:brainpipe 作者: EtienneCmb 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def to_excel(self, filename='myfile.xlsx'):
        """Export informations to a excel file

        Kargs:
            filename: string
                Name of the excel file ex: filename='myfile.xlsx'
        """
        writer = ExcelWriter(filename)
        self.clfinfo.to_excel(writer,'Classifier')
        self.statinfo.to_excel(writer,'Statistics')
        try:
            self.featinfo.to_excel(writer,'Features')
        except:
            warn('Informations about features has been ignored. Run fit()')
        writer.save()
visualizer.py 文件源码 项目:malmo-challenge 作者: Kaixhin 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def close(self, format='csv'):
        import pandas as pd

        if format == 'csv':
            pd.DataFrame.from_dict(self._data, orient='index').to_csv(self._file)
        elif format == 'json':
            pd.DataFrame.from_dict(self._data, orient='index').to_json(self._file)
        else:
            writer = pd.ExcelWriter(self._file)
            pd.DataFrame.from_dict(self._data, orient='index').to_excel(writer)
            writer.save()
visualizer.py 文件源码 项目:malmo-challenge 作者: Microsoft 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def close(self, format='csv'):
        import pandas as pd

        if format == 'csv':
            pd.DataFrame.from_dict(self._data, orient='index').to_csv(self._file)
        elif format == 'json':
            pd.DataFrame.from_dict(self._data, orient='index').to_json(self._file)
        else:
            writer = pd.ExcelWriter(self._file)
            pd.DataFrame.from_dict(self._data, orient='index').to_excel(writer)
            writer.save()
export.py 文件源码 项目:SniffAir 作者: Tylous 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def main(workspace, path, name):
    table_name = ['accessPoints', 'ProbeRequests', 'ProbeRequests', 'EAP', 'Hidden_SSID', 'inscope_accessPoints', 'inscope_ProbeRequests', 'inscope_ProbeResponses']
    sheet_name = ['AccessPoints', 'ProbeRequests', 'ProbeRequests', 'EAP', 'Hidden_SSID', 'Inscope_AccessPoints', 'Inscope_ProbeRequests', 'Inscope_ProbeResponses']
    ws = workspace
    q = queries()
    ws1 = q.db_connect(ws)
    writer = dp.ExcelWriter(path+name+'.xlsx', engine='xlsxwriter')
    j = 0
    print "Exporting: "+path+name+'.xlsx'
    for tbn in table_name:
        try:
            td = dp.read_sql('select * from '+tbn+'', ws1)
            if td.empty:
                pass
                j +=1
                print colors.RD + "[-]" + colors.NRM + " Skipping: " + sheet_name[j] + ". No Data in table."
            else:
                td.to_excel(writer, sheet_name=''+sheet_name[j]+'', index=False)
                j +=1
                print colors.GRN + "[+]" + colors.NRM + " Exporting: " + sheet_name[j] + "."
        except ValueError:
            continue
        except pandas.io.sql.DatabaseError:
            continue
    writer.save()
    print "Export Completed"
abstract_data_project.py 文件源码 项目:the-magical-csv-merge-machine 作者: entrepreneur-interet-general 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def to_xls(self, module_name, file_name):
        '''
        Takes the file specified by module and file names and writes an xls in 
        the same directory with the same name (changing the file extension).

        Columns of the original file will be written in the first sheet.
        Columns containing "__" will be written the second sheet

        Use for download only!

        INPUT:
            - module_name:
            - file_name:
        '''
        raise DeprecationWarning('Excel download currently not supported due'\
                                 'to potential memory issues with large files')

        file_path = self.path_to(module_name, file_name)

        assert file_name[-4:] == '.csv'
        new_file_name = file_name[:-4] + '.xlsx'
        new_file_path = self.path_to(module_name, new_file_name)

        tab = pd.read_csv(file_path, encoding='utf-8', dtype=str)


        columns_og = [x for x in tab.columns if '__' not in x]
        columns_new = [x for x in tab.columns if '__' in x]

        writer = pd.ExcelWriter(new_file_path)
        tab[columns_og].to_excel(writer, 'original_file', index=False)
        tab[columns_new].to_excel(writer, 'normalization', index=False)
        writer.save()        
        return new_file_name
pandas_mongo_bridge.py 文件源码 项目:fieldsight-kobocat 作者: awemulya 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def export_to(self, file_path, batchsize=1000):
        self.xls_writer = ExcelWriter(file_path)

        # get record count
        record_count = self._query_mongo(count=True)

        # query in batches and for each batch create an XLSDataFrameWriter and
        # write to existing xls_writer object
        start = 0
        header = True
        while start < record_count:
            cursor = self._query_mongo(self.filter_query, start=start,
                                       limit=batchsize)

            data = self._format_for_dataframe(cursor)

            # write all cursor's data to their respective sheets
            for section_name, section in self.sections.iteritems():
                records = data[section_name]
                # TODO: currently ignoring nested repeats
                # so ignore sections that have 0 records
                if len(records) > 0:
                    # use a different group delimiter if needed
                    columns = section["columns"]
                    if self.group_delimiter != DEFAULT_GROUP_DELIMITER:
                        columns = [self.group_delimiter.join(col.split("/"))
                                   for col in columns]
                    columns = columns + self.EXTRA_COLUMNS
                    writer = XLSDataFrameWriter(records, columns)
                    writer.write_to_excel(self.xls_writer, section_name,
                                          header=header, index=False)
            header = False
            # increment counter(s)
            start += batchsize
            time.sleep(0.1)
        self.xls_writer.save()
charts.py 文件源码 项目:xl_link 作者: 0Hughman0 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def setUpClass(cls):
        cls.f = test_frame
        cls.writer = pd.ExcelWriter(path_for('charts', cls.__name__), engine=cls.to_excel_args['engine'])
        cls.xlmap = cls.f.to_excel(cls.writer, **cls.to_excel_args)
        cls.workbook = cls.xlmap.writer.book
        return cls
shixin_zhixing_defend_PINGAN.py 文件源码 项目:forward 作者: yajun0601 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def export_pingan_trust16():
    issuers = pd.read_excel('../peace/??????.xlsx',sheetname=[0], header = 0)[0]
    writer = pd.ExcelWriter('time_searies_all.xlsx')
    for company in issuers['name']:
        print(company)
        query = db.pingan_total.find({"name":company},{'_id':0,'name':0}).sort("rptDate" , 1)
        data = pd.DataFrame(list(query))
        data = data[ ['??','??','??','??','??', '??', '??','??', 'rptDate']]
        data = data.rename(columns={"??":"???????","??":"????","??":"?????","??":"???????"})        
        data.to_excel(writer, sheet_name=company)

    writer.save()
modle.py 文件源码 项目:forward 作者: yajun0601 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def process():
    df=pd.read_excel(DATA_FILE,sheetname=[1], header = 0,index_col=0,convert_float=False)[1]
#    df0 = df[1].fillna(0)
#    df = df.head(100)
#    resultList=np.zeros(df.index.size)
    resultList=[]
    idList=[]
    for i in range(df.index.size):
        for nan in range(1,40):
            if math.isnan(df.values[i][nan]):
#                print(df[1].values[i])
                df.values[i][40]=np.nan
                break
        if nan < 39: # for nan results
            idList.append(df.index[i])
            resultList.append([df.values[i][0],0])
            print("%s:%s"%(df.index[i],df.values[i][0]))
            continue
        ID=df.index[i]
        df.values[i][0]
        data=df.values[i][1:40].reshape(13,3)
# handle nulls        
#        print(data)
        industryScore = calcIndustry(ID,data)
        trendScore = calcTrend(ID,data)
        fluncScore = calcFluctuation(ID,data)
        a = np.append(industryScore,trendScore)
        b= np.append(a,fluncScore)
        idList.append(ID)
        resultList.append([df.values[i][0],calcTotal(b)])

#        print("%s:%f"%(ID,resultList[i]))
    resultdf=pd.DataFrame(resultList,idList,columns=['NAME','Score'])
    with pd.ExcelWriter('result.xls') as writer:
        resultdf.to_excel(writer,sheet_name=str(0))
io.py 文件源码 项目:Taskpacker 作者: Edinburgh-Genome-Foundry 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def tasks_to_spreadsheet(tasks, filepath):
    import pandas
    df_tasks = pandas.DataFrame.from_records([
        task.to_dict()
        for task in tasks
    ])
    resources = set(resource for task in tasks for resource in task.resources)
    df_resources = pandas.DataFrame.from_records([
        resource.to_dict()
        for resource in resources
    ])

    with pandas.ExcelWriter(filepath, engine='xlsxwriter') as writer:
        df_tasks.to_excel(writer, sheet_name='tasks', index=False)
        df_resources.to_excel(writer, sheet_name='resources', index=False)
csv_to_excel.py 文件源码 项目:spice-hate_speech_detection 作者: futurice 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main(argv):
    parser = argparse.ArgumentParser()
    parser.add_argument('--inputdir', help='Input directory to be converted', required=True)
    parser.add_argument('--outdir', help='Output directory', required=True)
    parser.add_argument('--cols', help='Columns to include', default=DEFAULT_COLUMNS)
    parser.add_argument('--sortby', help='Row that is going to be used for sorting', default='prediced_score')
    parser.add_argument('--ascending', help='Sort in ascending order (def. False)', default=False)
    parser.add_argument('--newcols', help='Columns to be added', default=['LABEL'])
    args = parser.parse_args(argv)

    # Get a list of files to be converted
    filenames = glob.glob('data/output/*.csv')
    for filename in filenames:
        # Skip existing files
        outputfile = os.path.join(args.outdir,
                                  '.'.join(os.path.basename(filename).split('.')[:1]) + '.xls')
        if os.path.exists(outputfile):
            continue

        df = pd.read_csv(filename)

        # Sort the data
        df.sort(args.sortby, ascending=args.ascending, inplace=True)

        # Drop columns that we dont need
        selected_cols = args.cols.split(' ')
        for col in df.columns.tolist():
            if selected_cols.count(col) == 0:
                df.drop(col, axis=1, inplace=True)

        # Add new cols
        for newcol in args.newcols:
            df[newcol] = ''

        # Store file
        outputfile = os.path.join(args.outdir,
                                  '.'.join(os.path.basename(filename).split('.')[:1]) + '.xls')
        if not os.path.exists(os.path.dirname(outputfile)):
            os.makedirs(os.path.dirname(outputfile))
        writer = pd.ExcelWriter(outputfile, engine='xlsxwriter')
        df.to_excel(writer, sheet_name='Sheet1')
        writer.save()
        print('Wrote a new excel file: %s' % outputfile)
trader.py 文件源码 项目:bigfishtrader 作者: xingetouzi 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def _save_origin(self, path):
        # if not self.initialized:
        #     raise ValueError("trader not initialized, no data to perform")

        writer = ExcelWriter(path, encoding="utf-8")
        pd.DataFrame(self.performance.equity).to_excel(writer, "??")
        self.performance.order_details.to_excel(writer, "??")
        writer.save()
localfile.py 文件源码 项目:parade 作者: bailaohe 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def export(df, table, export_type='excel', target_path=None, if_exists='replace', suffix=None):
        if target_path:
            if export_type == 'excel' and not suffix:
                suffix = 'xlsx'
            target_file = os.path.join(target_path,
                                       table + '-' + str(datetime.date.today())) + '.' + str(suffix or export_type)
            if if_exists == 'replace' and os.path.exists(target_file):
                os.remove(target_file)
            export_io = target_file

        else:
            export_io = BytesIO()

        if export_type == 'excel':
            writer = pd.ExcelWriter(export_io, engine='xlsxwriter')
            df.to_excel(writer, index=False)
            writer.save()
        elif export_type == 'csv':
            export_io = BytesIO(df.to_csv(target_path, index=False, chunksize=4096).encode())
        elif export_type == 'json':
            export_io = BytesIO(df.to_json(target_path, orient='records').encode())
        elif export_type == 'pickle':
            pkl.dump(df, export_io, protocol=pkl.HIGHEST_PROTOCOL)
        else:
            raise NotImplementedError("export type {} is not supported".format(export_type))
        return export_io, table + '.' + str(suffix or export_type)
data.py 文件源码 项目:bayesianpy 作者: morganics 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def write(self, if_exists:str=None):
        #from pyexcelerate import Workbook
        self._logger.info("Writing rows to storage")
        #wb = Workbook()
        #wb.new_sheet("Sheet1", data=self.data)
        #wb.save("{}.xlsx".format(os.path.join(self._db_dir, self.table)))
        writer = pd.ExcelWriter("{}.xlsx".format(os.path.join(self._db_dir, self.table))
                                , engine='xlsxwriter')
        self.data.to_excel(writer)
        writer.save()
        self._logger.info("Finished writing rows to storage")


问题


面经


文章

微信
公众号

扫码关注公众号