python类set_option()的实例源码

extract_genre.py 文件源码 项目:LyricsGenerator 作者: AaronVanGeffen 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def exportGenre(df, genre):
    print ("Now exporting ", genre)
    pd.set_option('display.width', 120)

    df_genre = df[df['genre'] == genre]
    print(df_genre.shape)

    df_sample = df_genre.ix[np.random.choice(df_genre.index, 10000, replace=False)]
    #print(df_sample)
    print(df_sample.shape)

    with open("lyrics/" + genre + ".txt", "a") as f:
        for index, row in df_sample.iterrows():
                f.write("<S>\n" + row['lyrics'] + "\n<E>\n")
le2.py 文件源码 项目:AliMusicTrendPredict 作者: strint 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def print_full(x):
    pd.set_option('display.max_rows', len(x))
    print(x)
    pd.reset_option('display.max_rows')
result.py 文件源码 项目:PyTrading 作者: yudhvir 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def result():
    pd.set_option('display.max_rows', 1000)

    profit_to_loss()
    # best_rand_comb()
tick_data.py 文件源码 项目:PyTrading 作者: yudhvir 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def show_data(x):
    df = read_list("Tick/"+get_time(),
        ['last_price','volume','bp1','bo1','bq1','ap1','ao1','aq1',
        'bp2','bo2','bq2','ap2','ao2','aq2','instrument_token','timestamp'])        
    df = df.query('instrument_token == '+str(x))
    pd.set_option('display.max_rows', len(df))
    print df
getter.py 文件源码 项目:PyTrading 作者: yudhvir 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def download_data(quote,day=0):
    days = day+1
    url1='http://www.google.com/finance/getprices?q='
    url2='&x=NSE&i=60&p='
    url3='d&f=d,c,o,h,l,v&df=cpct&auto=1&ts=1266701290218' 
    #Not using the ts=1266701290218 parameter, if something goes wrong, do try it
    df = pd.read_csv(url1+quote+url2+str(days)+url3,header=4,parse_dates=True,
        skiprows=[5,6,7])
    # print df
    pd.set_option('display.max_rows', 100)
    if(days>1):
        i=0
        for i in range(2,len(df)):
            # print df.iat[i,0]
            if(str(df.iat[i,0]).startswith('a')): 
                # print "the next day readings start form " + str(df.iat[i,0])
                df.iat[i,0] = df.iat[i,0][1:]
            try:
                if(int(df.iat[i,0])-int(df.iat[i-2,0])<0): 
                    break
            except:
                print df
                continue
        #i=df.index.get_loc('a',method='ffill')
        df=df.ix[0:i-2]
    # print df
    df.columns = ['DATE', 'CLOSE','HIGH','LOW','OPEN','VOLUME']
    df=df.set_index('DATE')
    #print df
    return df
run_eskapade.py 文件源码 项目:Eskapade 作者: KaveIO 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def main():
    """Run Eskapade

    Top-level control function for an Eskapade run started from the
    command line.  Arguments specified by the user are parsed and
    converted to settings in the configuration object.  Optionally, an
    interactive IPython session is started when the run is finished.
    """

    # create parser for command-line arguments
    parser = create_arg_parser()
    user_args = parser.parse_args()

    # create config object for settings
    if not user_args.unpickle_config:
        # create new config
        settings = ConfigObject()
    else:
        # read previously persisted settings if pickled file is specified
        conf_path = user_args.config_files.pop(0)
        settings = ConfigObject.import_from_file(conf_path)
    del user_args.unpickle_config

    # set configuration macros
    settings.add_macros(user_args.config_files)

    # set user options
    settings.set_user_opts(user_args)

    # run Eskapade
    core.execution.run_eskapade(settings)

    # start interpreter if requested (--interactive on command line)
    if settings.get('interactive'):
        # create process manager, config object, and data store
        proc_mgr = ProcessManager()
        settings = proc_mgr.service(ConfigObject)
        ds = proc_mgr.service(DataStore)

        # set Pandas display options
        pd.set_option('display.width', 120)
        pd.set_option('display.max_columns', 50)

        # start interactive session
        log = logging.getLogger(__name__)
        log.info("Continuing interactive session ... press Ctrl+d to exit.\n")
        IPython.embed()
evaluation.py 文件源码 项目:deep-news-summarization 作者: hengluchang 项目源码 文件源码 阅读 41 收藏 0 点赞 0 评论 0
def main():

    desired_width = 600
    pd.set_option('display.width', desired_width)

    # specify sentence/true headline/predicted headline path.
    sentence_path = './dataset/test_enc.txt'
    true_headline_path = "./dataset/test_dec.txt"
    predicted_headline_path = "./output/predicted_test_headline.txt"

    # specify number of lines to read.
    number_of_lines_read = 400

    with open(true_headline_path) as ft:
        print("reading actual headlines...")
        true_headline = [next(ft).strip() for line in range(number_of_lines_read)]
    ft.close()

    with open(predicted_headline_path) as fp:
        print("reading predicted headlines...")
        predicted_headline = []
        for line in range(number_of_lines_read):
            predicted_headline.append(next(fp).strip())
    fp.close()
    # for debugging to detect empty predicted headlines (empty predicted headline will cause error while calculating BLEU)
    # print (predicted_headline[88380])
    # print (true_headline[88380])

    with open(sentence_path) as f:
        print("reading sentences...")
        sentence = [next(f).strip() for line in range(number_of_lines_read)]
    ft.close()

    # For testing purpose
    # true_headline = ["F1's Schumacher Slams Into Wall"]
    # predicted_headline = ["Schumacher Crashes in Practice"]
    BLEUscore, avgBLEUscore = getBLEUscore(true_headline, predicted_headline)
    print("average BLEU score: %f" % avgBLEUscore)

    summary = list(zip(BLEUscore, predicted_headline, true_headline, sentence))
    # pd.set_option("display.max_rows", 999)
    # pd.set_option('max_colwidth', 80)
    df = pd.DataFrame(data=summary, columns=['BLEU score', 'Predicted headline', 'True headline', 'article'])
    df_sortBLEU = df.sort_values('BLEU score', ascending=False)
    # print(df_sortBLEU)

    # Store the top 100 predicted headline in terms of BLEU score
    output_file = 'BLEU.txt'
    df_sortBLEU.head(100).to_csv(output_file, sep='\n', index=False,
                       line_terminator='\n-------------------------------------------------\n')
    print("Finished creating results summary in %s!" %output_file)
timing.py 文件源码 项目:UVA 作者: chiachun 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def create_time_table(df, df_tsel, htmlname, col, vd, cfg):

    # Prepare df and df_tsel
    grouped = df.groupby(col)

    # accurate start and end time
    accstarts = []
    accends = []
    photos = []
    # insert photos into df_tsel
    for index,row in df_tsel.iterrows():
        person = row['person']
        i = person.split('_')[1]
        start = int( row['start'] )
        end = int( row['end'] )
        group = grouped.get_group(int(i))
        accstart =  group.query('abs(time-%f)<=30' % start).time.min()
        accend =  group.query('abs(time-%f)<=30' % end).time.max()
        accstarts.append(accstart)
        accends.append(accend)
        num_photo = group.query('abs(time-%f)<=30' % start).number.tolist()[1]
        photo = '<img alt="not found" src="%s/%d.png" class="imgshow" onclick="goto(%d)"/>' % (vd.photo_dir, num_photo, accstart)
        photos.append(photo)
    df_tsel['photo']= photos
    df_tsel['accstarts'] = format_time(np.array(accstarts))
    df_tsel['accends'] = format_time(np.array(accends))
    df_tsel = df_tsel[['person','accstarts','accends','photo']]
    df_tsel = df_tsel.sort_values('accstarts')
    df_tsel.columns=['person','start','end','photo']


    # Make a html file
    header ='<!DOCTYPE html> \n <html> \n <head> \n'
    css = '<link rel="stylesheet" href="styles.css">  <link rel="stylesheet" href="table.css"> \n'
    js = '<script src="/Users/chiachun/Exp/tagly4/demo/pvideo.js"> </script> \n'
    header2 = '</head> \n <body> '

    lvideo1 = ' <div style="float:left;margin-right:15px;"> <video id="Video1" height="400" controls> '
    lvideo2 = '<source src="%s" type="video/mp4"> </video> </div> \n' % cfg.videoName

    div1 = '<div style="overflow-x:auto;">\n'
    div2 ='</div> </body> </html>'
    pd.set_option('display.max_colwidth', -1)
    f = open(htmlname,'w')
    f.write(header); f.write(css); f.write(js); f.write(header2);
    f.write(lvideo1); f.write(lvideo2); f.write(div1); 
    f.write(df_tsel.to_html(escape=False,index=False))
    f.write(div2)
    f.close()
Average.py 文件源码 项目:sogaQuant 作者: idoplay 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def run(self):
        print self.args
        '''
        dateline=%s" % day
        '''
        day = self.args[2]
        pandas.set_option('display.width', 200)
        d2 = self.mysql.getRecord("select s_code from s_stock_list where dateline=%s" % day)
        for row in d2:
            s_code = row['s_code']
            #if s_code != 'sh600000':
            #    continue
            self._chQ = self.getChuQuan(s_code)
            sql_data = "select s_code,code,dateline,chg_m,chg,open,close,high,low,last_close,name FROM s_stock_trade WHERE s_code ='%s' and dateline >20150101 " % s_code
            print sql_data
            tmpdf2 = pandas.read_sql(sql_data, self.mysql.db)
            tmpdf = tmpdf2.apply(self.format_chuquan_hanlder, axis=1)
            tmpdf.sort_values(by=('dateline'), ascending=False)

            ma_list = [5, 10, 20, 30, 60]
            for ma in ma_list:
                tmpdf['MA_' + str(ma)] = pandas.rolling_mean(tmpdf['close'], ma)

            last5 = tmpdf.tail(60)
            #print last5
            #sys.exit()
            for i5 in range(0, len(last5)):
                if str(last5.iloc[i5].dateline) != day:
                    continue

                word = s_code[2:] + str(last5.iloc[i5].dateline)
                if math.isnan(last5.iloc[i5].MA_5):
                    break
                if math.isnan(last5.iloc[i5].MA_10):
                    break

                _m60 = last5.iloc[i5].MA_60
                if math.isnan(last5.iloc[i5].MA_60):
                    _m60 = 0
                else:
                    _m60 = round(_m60, 2)
                _m30 = last5.iloc[i5].MA_30
                if math.isnan(last5.iloc[i5].MA_30):
                    _m30 = 0
                else:
                    _m30 = round(_m30, 2)

                item = {}
                item['s_code'] = s_code
                item['dateline'] = last5.iloc[i5].dateline
                item['hash'] = hashlib.md5(word).hexdigest()
                item['ma5'] = round(last5.iloc[i5].MA_5, 2)
                item['ma10'] = round(last5.iloc[i5].MA_10, 2)
                item['ma20'] = round(last5.iloc[i5].MA_20, 2)
                item['ma30'] = _m30
                item['ma60'] = _m60
                self.mysql.dbInsert('s_stock_average', item)
SecondDraw.py 文件源码 项目:sogaQuant 作者: idoplay 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def min_data(self):
        sql_data = "select * FROM s_stock_runtime WHERE dateline =20160607 and s_code='sz000048' "
        tmpdf = pandas.read_sql(sql_data, self.mysql.db)
        pandas.set_option('display.width', 400)
        # ???????period_type??????'W'??'M'????'Q'?????'5min'?12??'12D'
        period_type = 'W'
        #????

        # ??date????index
        tmpdf.set_index('date_str', inplace=True)
        period_stock_data = tmpdf.resample('1Min', how='last')
        #period_stock_data =
        #print len(period_stock_data)
        #print period_stock_data['B_1_price'].sum()
        period_stock_data['MA_1'] = pandas.rolling_mean(period_stock_data['B_1_price'], 1)
        #period_stock_data = tmpdf.resample('5Min', how='last')
        print period_stock_data
        sys.exit()
        df = pandas.DataFrame(columns=('k', 'v'))
        data = {}
        j = 0
        for i in range(len(tmpdf)):
            #print tmpdf.iloc[i]
            _min = tmpdf.iloc[i].min_sec
            #print _min
            if _min > 150000 and '150000' in data.keys():
                continue
            _min = str(_min)

            _min = _min[0:-2]
            #print _min
           # sys.exit()
            #[0:-2]

            _min_str = "%s00" % _min
            #data[_min_str] =

            if _min_str not in data.keys():
                #data = {'k': _min_str, 'v': tmpdf.iloc[i].B_1_price}
                j += 1

            data[_min_str] = {'v': tmpdf.iloc[i].B_1_price}

            df.loc[j] = {'k': _min_str, 'v': tmpdf.iloc[i].B_1_price}
            #j += 1
            #data.append(_v)
            #sys.exit()
        print df
        #print tmpdf
Selecter.py 文件源码 项目:sogaQuant 作者: idoplay 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def init(self, setting):
        #self.mysql = sMysql(MYSQL_DB['host'], MYSQL_DB['user'], MYSQL_DB['password'], MYSQL_DB['dbname'])
        limit = 100
        if 'limit' in setting.keys():
            limit = setting['limit']

        _where = []
        s_keys_list = setting.keys()

        if 'start' not in s_keys_list and 'end' not in s_keys_list:
            print u"StartTime OR EndTime is Error"
            sys.exit()

        _today = self.tools.d_date('%Y%m%d')
        if 'end' not in setting.keys():
            setting['end'] = _today

        if 'start' not in setting.keys():
            setting['start'] = setting['end']

        if setting['start'] == setting['end']:
            _where.append(" dateline = %s" % setting['end'])
        else:
            _where.append(" dateline <= %s" % setting['end'])
            _where.append(" dateline >= %s" % setting['start'])

        if 'universe' in setting.keys():
            s_codes = " s_code in(%s)" % self.___set_universe(setting['universe'])
            _where.append(s_codes)

        _wheres = ' AND '.join(_where)

        print u"=======????===%s====" % setting['end']

        date_sql = "select dateline FROM s_opening_day WHERE dateline <=%s order by dateline desc limit %s" % (setting['end'], limit)
        print date_sql
        temp = self.mysql.getRecord(date_sql)
        self.today = _today
        self.lastDay = temp[0]['dateline']
        self.yestoday = temp[1]['dateline']
        pandas.set_option('display.width', 200)
        sql_data = "select s_code,code,dateline,chg_m,chg,open,close,high,low,last_close,name,amount,run_market FROM s_stock_trade WHERE %s " % _wheres
        #print sql_data
        #sys.exit()
        tmpdf = pandas.read_sql(sql_data, self.mysql.db)
        #print tmpdf
        #sys.exit()
        #????????
        if ('is_open_chuquan' in setting.keys()) and setting['is_open_chuquan']:
            self._chQ = self.getChuQuan()
            #print self._chQ
            #sys.exit()
            self.df = tmpdf.apply(self.format_chuquan_hanlder, axis=1)
        else:
            self.df = tmpdf
        #print self.df
        #sys.exit()
        self.todayDF = self.df[self.df.dateline == int(self.lastDay)]
        self.yestodayDF = self.df[self.df.dateline == int(self.yestoday)]
        #sys.exit()
        print "========init Days & init stock trader Done."
51cto??_??????.py 文件源码 项目:Data_Analysis 作者: crown-prince 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def main():
    #?????????????????, ?????????
    stock_list = {"zsyh":"600036","jsyh":"601939","szzs":"000001","pfyh":"600000","msyh":"600061"}

    for stock, code in stock_list.items():
        globals()[stock] = tsh.get_hist_data(code,start="2015-01-01",end="2016-04-16")
        #code:?????start:?????end:????
    #print(zsyh) #???????????
    make_end_line()
    print(zsyh.head())
    make_end_line()
    print(zsyh.columns)
    make_end_line()
    """
    ????

    date???
    open????
    high????
    close????
    low????
    volume????
    price_change?????
    p_change????
    ma5?5???
    ma10?10???
    ma20: 20???
    v_ma5: 5???
    v_ma10: 10???
    v_ma20: 20???
    turnover:???[???????]
    """
    print(zsyh.describe())
    make_end_line()
    print(zsyh.info())
    make_end_line()
    plt.show(zsyh["close"].plot(figsize=(12,8))) #???????????
    #pd.set_option("display.float_format", lambda x: "%10.3f" % x) 
    plt.show(zsyh["volume"].plot(figsize=(12,8)))
    zsyh[["close","ma5","ma10","ma20"]].plot(subplots = True)
    plt.show()
    plt.show(zsyh[["close","ma5","ma10","ma20"]].plot(figsize=(12,8),linewidth=2))
    plt.show(zsyh["p_change"].plot())
    plt.show(zsyh["p_change"].plot(figsize=(10,4),legend=True,linestyle="--",marker="o"))
    #???????????
    plt.show(zsyh["p_change"].hist(bins=20))
    plt.show(zsyh["p_change"].plot.kde()) #?????
                                          #?????(kernel density estimation)?????????????????
    plt.show(sns.kdeplot(zsyh["p_change"].dropna()))
    plt.show(sns.distplot(zsyh["p_change"].dropna())) #??????????????????????
scheduler.py 文件源码 项目:treadmill 作者: Morgan-Stanley 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def explain_group(parent):
    """Scheduler explain CLI group."""

    def _print_frame(df):
        """Prints dataframe."""
        if not df.empty:
            pd.set_option('display.max_rows', None)
            pd.set_option('float_format', lambda f: '%f' % f)
            pd.set_option('expand_frame_repr', False)
            print(df.to_string(index=False))

    @parent.group()
    def explain():
        """Explain scheduler internals"""
        pass

    @explain.command()
    @click.option('--instance', help='Application instance')
    @click.option('--partition', help='Cell partition', default='_default')
    @cli.admin.ON_EXCEPTIONS
    def queue(instance, partition):
        """Explain the application queue"""
        cell_master = make_readonly_master()
        frame = reports.explain_queue(cell_master.cell,
                                      partition,
                                      pattern=instance)
        _print_frame(frame)

    @explain.command()
    @click.argument('instance')
    @click.option('--mode', help='Tree traversal method',
                  type=click.Choice(reports.WALKS.keys()), default='default')
    @cli.admin.ON_EXCEPTIONS
    def placement(instance, mode):
        """Explain application placement"""
        cell_master = make_readonly_master()

        if instance not in cell_master.cell.apps:
            cli.bad_exit('Instance not found.')

        app = cell_master.cell.apps[instance]
        if app.server:
            cli.bad_exit('Instace already placed on %s' % app.server)

        frame = reports.explain_placement(cell_master.cell, app, mode)
        _print_frame(frame)

    del queue
    del placement


问题


面经


文章

微信
公众号

扫码关注公众号