def test_to_records(serializer):
data = {"value": [1, np.nan], "estimated": [True, False]}
columns = ["value", "estimated"]
index = pd.date_range('2000-01-01', periods=2, freq='D')
df = pd.DataFrame(data, index=index, columns=columns)
records = serializer.to_records(df)
assert len(records) == 2
assert records[0]["end"] == datetime(2000, 1, 1, tzinfo=pytz.UTC)
assert pd.isnull(records[0]["value"])
assert not records[0]["estimated"]
assert records[1]["end"] == datetime(2000, 1, 2, tzinfo=pytz.UTC)
assert records[1]["value"] == 1
assert records[1]["estimated"]
python类isnull()的实例源码
def test_get_last_traded_equity_minute(self):
trading_calendar = self.trading_calendars[Equity]
# Case: Missing data at front of data set, and request dt is before
# first value.
dts = trading_calendar.minutes_for_session(self.trading_days[0])
asset = self.asset_finder.retrieve_asset(1)
self.assertTrue(pd.isnull(
self.data_portal.get_last_traded_dt(
asset, dts[0], 'minute')))
# Case: Data on requested dt.
dts = trading_calendar.minutes_for_session(self.trading_days[2])
self.assertEqual(dts[1],
self.data_portal.get_last_traded_dt(
asset, dts[1], 'minute'))
# Case: No data on dt, but data occuring before dt.
self.assertEqual(dts[4],
self.data_portal.get_last_traded_dt(
asset, dts[5], 'minute'))
def test_get_last_traded_future_minute(self):
asset = self.asset_finder.retrieve_asset(10000)
trading_calendar = self.trading_calendars[Future]
# Case: Missing data at front of data set, and request dt is before
# first value.
dts = trading_calendar.minutes_for_session(self.trading_days[0])
self.assertTrue(pd.isnull(
self.data_portal.get_last_traded_dt(
asset, dts[0], 'minute')))
# Case: Data on requested dt.
dts = trading_calendar.minutes_for_session(self.trading_days[3])
self.assertEqual(dts[1],
self.data_portal.get_last_traded_dt(
asset, dts[1], 'minute'))
# Case: No data on dt, but data occuring before dt.
self.assertEqual(dts[4],
self.data_portal.get_last_traded_dt(
asset, dts[5], 'minute'))
def sendData(con, df):
cursor = con.cursor()
cols = df.columns.tolist()
values = df.values
for vals in values:
for i,val in enumerate(vals):
if pd.isnull(val):
vals[i]=None
query = 'INSERT INTO {} ({}) VALUES ({})'.format(
SEND_TABLE,
','.join(['"{}"'.format(x) for x in cols]),
','.join(['%s']*len(cols)))
cursor.execute(query, tuple(vals))
con.commit()
cursor.close()
def __convert_survey_to_sequence(self):
s = self.__beamline
if 'LENGTH' not in s:
s['LENGTH'] = np.nan
offset = s['ORBIT_LENGTH'][0] / 2.0
if pd.isnull(offset):
offset = 0
self.__beamline['AT_CENTER'] = pd.DataFrame(
npl.norm(
[
s['X'].diff().fillna(0.0),
s['Y'].diff().fillna(0.0)
],
axis=0
) - (
s['LENGTH'].fillna(0.0) / 2.0 - s['ORBIT_LENGTH'].fillna(0.0) / 2.0
) + (
s['LENGTH'].shift(1).fillna(0.0) / 2.0 - s['ORBIT_LENGTH'].shift(1).fillna(0.0) / 2.0
)).cumsum() / 1000.0 + offset
self.__converted_from_survey = True
def split_rbends(line, n=20):
split_line = pd.DataFrame()
for index, row in line.iterrows():
if row['CLASS'] == 'RBEND' and pd.isnull(row.get('SPLIT')):
angle = row['ANGLE'] / n
length = row['L'] / n
for i in range(0,n):
row = row.copy()
row.name = index + "_{}".format(i)
row['SPLIT'] = True
row['ANGLE'] = angle
row['L'] = length
split_line = split_line.append(row)
else:
split_line = split_line.append(row)
split_line[['THICK']] = split_line[['THICK']].applymap(bool)
return split_line
def element_to_mad(e):
"""Convert a pandas.Series representation onto a MAD-X sequence element."""
if e.CLASS not in SUPPORTED_CLASSES:
return ""
mad = "{}: {}, ".format(e.name, e.CLASS)
if e.get('BENDING_ANGLE') is not None and not np.isnan(e['BENDING_ANGLE']):
mad += f"ANGLE={e['BENDING_ANGLE']},"
elif e.get('ANGLE') is not None and not np.isnan(e['ANGLE']):
mad += f"ANGLE={e.get('ANGLE', 0)},"
else:
# Angle property not supported by the element or absent
mad += ""
mad += ', '.join(["{}={}".format(p, e[p]) for p in SUPPORTED_PROPERTIES if pd.notnull(e.get(p, None))])
if pd.notnull(e['LENGTH']) and e['LENGTH'] != 0.0:
mad += ", L={}".format(e['LENGTH'])
if pd.notnull(e.get('APERTYPE', None)):
mad += ", APERTURE={}".format(str(e['APERTURE']).strip('[]'))
if pd.notnull(e.get('PLUG')) and pd.notnull(e.get('CIRCUIT')) and pd.isnull(e.get('VALUE')):
mad += ", {}:={}".format(e['PLUG'], e['CIRCUIT'])
if pd.notnull(e.get('PLUG')) and pd.notnull(e.get('VALUE')):
mad += ", {}={}".format(e['PLUG'], e['VALUE'])
mad += ", AT={}".format(e['AT_CENTER'])
mad += ";"
return mad
def _validate_pandas_index(index, label):
# `/` and `\0` aren't permitted because they are invalid filename
# characters on *nix filesystems. The remaining values aren't permitted
# because they *could* be misinterpreted by a shell (e.g. `*`, `|`).
illegal_chars = ['/', '\0', '\\', '*', '<', '>', '?', '|', '$']
chars_for_msg = ", ".join("%r" % i for i in illegal_chars)
illegal_chars = set(illegal_chars)
# First check the index dtype and ensure there are no null values
if index.dtype_str not in ['object', 'str'] or pd.isnull(index).any():
msg = "Non-string Metadata %s values detected" % label
raise ValueError(invalid_metadata_template % msg)
# Then check for invalid characters along index
for value in index:
if not value or illegal_chars & set(value):
msg = "Invalid characters (e.g. %s) or empty ID detected in " \
"metadata %s: %r" % (chars_for_msg, label, value)
raise ValueError(invalid_metadata_template % msg)
# Finally, ensure unique values along index
if len(index) != len(set(index)):
msg = "Duplicate Metadata %s values detected" % label
raise ValueError(invalid_metadata_template % msg)
def isnull(value):
"""
Return true if values is NaN or None.
>>> import numpy as np
>>> ReadPandas.isnull(np.NaN)
True
>>> ReadPandas.isnull(None)
True
>>> ReadPandas.isnull(0)
False
:param value: Value to test
:return: Return true for NaN or None values.
:rtype: bool
"""
return pd.isnull(value)
def clean_data(self):
# load qualif and race data
df_qual = self.load_qualif_data()
df_races = self.load_results_data()
# remove Japan as no data for 2015 race
df_qual = self.del_japan15(df_qual)
df_races = self.del_japan15(df_races)
# create unique id
df_qual = self.unique_id(df_qual)
df_races = self.unique_id(df_races)
# merge the results
df_out = df_races.merge(
df_qual, on='id_', how='inner', suffixes=('', '_qual'))
df_out = df_out[pd.isnull(df_out.q_min) == False]
print df_out.shape
return df_out.reset_index(drop=1), df_races.reset_index(drop=1), df_qual.reset_index(drop=1)
# load the data
def Xy_matrix(df_qual_and_race, columns, df_wet):
df_q_r_out = df_qual_and_race.loc[:, columns].reset_index(drop=1)
df_q_r_out = df_q_r_out[(pd.isnull(
df_q_r_out[y_label]) == False) & (pd.isnull(df_q_r_out.q_min) == False)].reset_index(drop=1)
X = df_q_r_out.loc[:, ['q_min', 'position_qual', 'raceId', 'circuitId',
'driverId', 'year', 'round', 'dob', y_label]]
# birth year / mo
X['birth_year'] = map(lambda x: int(x.year), df_q_r_out['dob'])
X['birth_mo'] = map(lambda x: int(x.month), df_q_r_out['dob'])
X.drop('dob', axis=1, inplace=1)
# adding wet as a feature
# weather data
df_races = d['races'].copy()
# df_races.head()
X = X.merge(df_wet.drop(['circuitId'], 1),
how='left', on=['year', 'round'])
# pit stop
df_pits = d['pitStops'].groupby(['raceId', 'driverId'], as_index=0)[
'milliseconds'].sum()
df_pits.reset_index(drop=1, inplace=1)
X_y = X.merge(df_pits, how='left', on=['raceId', 'driverId'])
X_y.fillna(0, inplace=1)
return X_y
def differences(self, name, values, ref_values, precision):
"""
Returns a short summary of where values differ, for two columns.
"""
for i, val in enumerate(values):
refval = ref_values[i]
if val != refval and not (pd.isnull(val) and pd.isnull(refval)):
stop = self.ndifferences(values, ref_values, i)
summary_vals = self.sample_format(values, i, stop, precision)
summary_ref_vals = self.sample_format(ref_values, i, stop,
precision)
return 'From row %d: [%s] != [%s]' % (i+1,
summary_vals,
summary_ref_vals)
if values.dtype != ref_values.dtype:
return 'Different types'
else:
return 'But mysteriously appear to be identical!'
def pandas_tdda_type(x):
dt = getattr(x, 'dtype', None)
if type(x) == str or dt == np.dtype('O'):
return 'string'
dts = str(dt)
if type(x) == bool or 'bool' in dts:
return 'bool'
if type(x) in (int, long) or 'int' in dts:
return 'int'
if type(x) == float or 'float' in dts:
return 'real'
if (type(x) == datetime.datetime or 'datetime' in dts
or type(x) == pandas_Timestamp):
return 'date'
if x is None or (not isinstance(x, pd.core.series.Series)
and pd.isnull(x)):
return 'null'
# Everything else is other, for now, including compound types,
# unicode in Python2, bytes in Python3 etc.
return 'other'
def _predict(self, treenode, X):
"""
predict a single sample
note that X is a tupe(index,pandas.core.series.Series) from df.iterrows()
"""
if treenode.is_leaf:
return treenode.leaf_score
elif pd.isnull(X[1][treenode.feature]):
if treenode.nan_direction == 0:
return self._predict(treenode.left_child, X)
else:
return self._predict(treenode.right_child, X)
elif X[1][treenode.feature] < treenode.threshold:
return self._predict(treenode.left_child, X)
else:
return self._predict(treenode.right_child, X)
def ffill_buffer_from_prior_values(freq,
field,
buffer_frame,
digest_frame,
pv_frame,
raw=False):
"""
Forward-fill a buffer frame, falling back to the end-of-period values of a
digest frame if the buffer frame has leading NaNs.
"""
# convert to ndarray if necessary
digest_values = digest_frame
if raw and isinstance(digest_frame, pd.DataFrame):
digest_values = digest_frame.values
buffer_values = buffer_frame
if raw and isinstance(buffer_frame, pd.DataFrame):
buffer_values = buffer_frame.values
nan_sids = pd.isnull(buffer_values[0])
if np.any(nan_sids) and len(digest_values):
# If we have any leading nans in the buffer and we have a non-empty
# digest frame, use the oldest digest values as the initial buffer
# values.
buffer_values[0, nan_sids] = digest_values[-1, nan_sids]
nan_sids = pd.isnull(buffer_values[0])
if np.any(nan_sids):
# If we still have leading nans, fall back to the last known values
# from before the digest.
key_loc = pv_frame.index.get_loc((freq.freq_str, field))
filler = pv_frame.values[key_loc, nan_sids]
buffer_values[0, nan_sids] = filler
if raw:
filled = ffill(buffer_values)
return filled
return buffer_frame.ffill()
def ffill_digest_frame_from_prior_values(freq,
field,
digest_frame,
pv_frame,
raw=False):
"""
Forward-fill a digest frame, falling back to the last known prior values if
necessary.
"""
# convert to ndarray if necessary
values = digest_frame
if raw and isinstance(digest_frame, pd.DataFrame):
values = digest_frame.values
nan_sids = pd.isnull(values[0])
if np.any(nan_sids):
# If we have any leading nans in the frame, use values from pv_frame to
# seed values for those sids.
key_loc = pv_frame.index.get_loc((freq.freq_str, field))
filler = pv_frame.values[key_loc, nan_sids]
values[0, nan_sids] = filler
if raw:
filled = ffill(values)
return filled
return digest_frame.ffill()
def combine_water_heights(in_data):
'''
Combine median and average water heights
Create a column of water heights in input data frame using Median
Water Depth by default, but fills in missing data using average
values
@param in_data: Input water heights data
'''
if 'Mean Water Depth' in in_data.columns and 'Median Water Depth' in in_data.columns:
# replacing all null median data with mean data
median_null_index = pd.isnull(in_data.loc[:,'Median Water Depth'])
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Median Water Depth']
# Check if there is any replacement data available
if (~pd.isnull(in_data.loc[median_null_index, 'Mean Water Depth'])).sum() > 0:
in_data.loc[median_null_index, 'Combined Water Depth'] = in_data.loc[median_null_index, 'Mean Water Depth']
elif 'Mean Water Depth' in in_data.columns and 'Median Water Depth' not in in_data.columns:
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Mean Water Depth']
elif 'Mean Water Depth' not in in_data.columns and 'Median Water Depth' in in_data.columns:
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Median Water Depth']
else:
raise ValueError("in_data needs either 'Mean Water Depth' or 'Median Water Depth' or both")
def CONV(self, param):
df = pd.DataFrame(index = param[0].index)
df['X'] = param[0]
df['W'] = param[1]
class Convolution:
def __init__(self, N):
self.N = N
self.q = deque([], self.N)
self.tq = deque([], self.N)
self.s = 0
self.t = 0
def handleInput(self, row):
if len(self.q) < self.N:
if pd.isnull(row['W']) or pd.isnull(row['X']):
return np.NaN
self.q.append(row['W'] * row['X'])
self.tq.append(row['W'])
self.s += row['W'] * row['X']
self.t += row['W']
return np.NaN
ret = self.s / self.t
self.s -= self.q[0]
self.t -= self.tq[0]
delta_s = row['W'] * row['X']
delta_t = row['W']
self.s += delta_s
self.t += delta_t
self.q.append(delta_s)
self.tq.append(delta_t)
return ret
conv = Convolution(param[2])
result = df.apply(conv.handleInput, axis = 1, reduce = True)
return result
#??????
def build_strain_specific_models(self, save_models=False):
"""Using the orthologous genes matrix, create and modify the strain specific models based on if orthologous
genes exist.
Also store the sequences directly in the reference GEM-PRO protein sequence attribute for the strains.
"""
if len(self.df_orthology_matrix) == 0:
raise RuntimeError('Empty orthology matrix')
# Create an emptied copy of the reference GEM-PRO
for strain_gempro in tqdm(self.strains):
log.debug('{}: building strain specific model'.format(strain_gempro.id))
# For each genome, load the metabolic model or genes from the reference GEM-PRO
logging.disable(logging.WARNING)
if self._empty_reference_gempro.model:
strain_gempro.load_cobra_model(self._empty_reference_gempro.model)
elif self._empty_reference_gempro.genes:
strain_gempro.genes = [x.id for x in self._empty_reference_gempro.genes]
logging.disable(logging.NOTSET)
# Get a list of genes which do not have orthology in the strain
not_in_strain = self.df_orthology_matrix[pd.isnull(self.df_orthology_matrix[strain_gempro.id])][strain_gempro.id].index.tolist()
# Mark genes non-functional
self._pare_down_model(strain_gempro=strain_gempro, genes_to_remove=not_in_strain)
# Load sequences into the base and strain models
self._load_strain_sequences(strain_gempro=strain_gempro)
if save_models:
cobra.io.save_json_model(model=strain_gempro.model,
filename=op.join(self.model_dir, '{}.json'.format(strain_gempro.id)))
strain_gempro.save_pickle(op.join(self.model_dir, '{}_gp.pckl'.format(strain_gempro.id)))
log.info('Created {} new strain-specific models and loaded in sequences'.format(len(self.strains)))
def __ApplyOHE(cls, data, d_feat):
""""""
n = len(data)
result = np.zeros((n, len(d_feat)), dtype='int8')
##
d_stat = {}
for i in range(n):
for col in cls.CategoryCols:
v = data.ix[i, col]
if(col not in d_stat):
d_stat[col] = {}
if(pd.isnull(v)):
result[i, d_feat['%s:missing' % col]] = 1
if('missing' in d_stat[col]):
d_stat[col]['missing'] += 1
else:
d_stat[col]['missing'] = 1
elif('%s:%s' % (col, v) in d_feat):
result[i, d_feat['%s:%s' % (col, v)]] = 1
if('hit' in d_stat[col]):
d_stat[col]['hit'] += 1
else:
d_stat[col]['hit'] = 1
else:
result[i, d_feat['%s:less' % col]] = 1
if('less' in d_stat[col]):
d_stat[col]['less'] += 1
else:
d_stat[col]['less'] = 1
## check
for col in d_stat:
if(np.sum(list(d_stat[col].values())) != n):
print('Encoding for column %s error, %d : %d. ' % (col, np.sum(list(d_stat[col].values())),n))
return result