def discriminate(self, x_var, y, weights, biases, reuse=False):
y1 = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim])
x_var = conv_cond_concat(x_var, y1)
conv1= lrelu(conv2d(x_var, weights['wc1'], biases['bc1']))
conv1 = conv_cond_concat(conv1, y1)
conv2= lrelu(batch_normal(conv2d(conv1, weights['wc2'], biases['bc2']), scope='dis_bn1', reuse=reuse))
conv2 = tf.reshape(conv2, [self.batch_size, -1])
conv2 = tf.concat([conv2, y], 1)
fc1 = lrelu(batch_normal(fully_connect(conv2, weights['wc3'], biases['bc3']), scope='dis_bn2', reuse=reuse))
fc1 = tf.concat([fc1, y], 1)
#for D
output= fully_connect(fc1, weights['wd'], biases['bd'])
return tf.nn.sigmoid(output)
python类conv2d()的实例源码
def encode_z(self, x, weights, biases):
c1 = tf.nn.relu(batch_normal(conv2d(x, weights['e1'], biases['eb1']), scope='enz_bn1'))
c2 = tf.nn.relu(batch_normal(conv2d(c1, weights['e2'], biases['eb2']), scope='enz_bn2'))
c2 = tf.reshape(c2, [self.batch_size, 128*7*7])
#using tanh instead of tf.nn.relu.
result_z = batch_normal(fully_connect(c2, weights['e3'], biases['eb3']), scope='enz_bn3')
#result_c = tf.nn.sigmoid(fully_connect(c2, weights['e4'], biases['eb4']))
#Transforming one-hot form
#sparse_label = tf.arg_max(result_c, 1)
#y_vec = tf.one_hot(sparse_label, 10)
return result_z
def discriminator_labeler(image, output_dim, config, reuse=None):
batch_size=tf.shape(image)[0]
with tf.variable_scope("disc_labeler",reuse=reuse) as vs:
dl_bn1 = batch_norm(name='dl_bn1')
dl_bn2 = batch_norm(name='dl_bn2')
dl_bn3 = batch_norm(name='dl_bn3')
h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64
h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128
h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248
h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv')))
dim3=np.prod(h3.get_shape().as_list()[1:])
h3_flat=tf.reshape(h3, [-1,dim3])
D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label')
D_labels = tf.nn.sigmoid(D_labels_logits)
variables = tf.contrib.framework.get_variables(vs)
return D_labels, D_labels_logits, variables
def discriminator_gen_labeler(image, output_dim, config, reuse=None):
batch_size=tf.shape(image)[0]
with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs:
dl_bn1 = batch_norm(name='dl_bn1')
dl_bn2 = batch_norm(name='dl_bn2')
dl_bn3 = batch_norm(name='dl_bn3')
h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64
h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128
h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248
h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv')))
dim3=np.prod(h3.get_shape().as_list()[1:])
h3_flat=tf.reshape(h3, [-1,dim3])
D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label')
D_labels = tf.nn.sigmoid(D_labels_logits)
variables = tf.contrib.framework.get_variables(vs)
return D_labels, D_labels_logits,variables
def discriminator_on_z(image, config, reuse=None):
batch_size=tf.shape(image)[0]
with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs:
dl_bn1 = batch_norm(name='dl_bn1')
dl_bn2 = batch_norm(name='dl_bn2')
dl_bn3 = batch_norm(name='dl_bn3')
h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64
h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128
h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248
h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv')))
dim3=np.prod(h3.get_shape().as_list()[1:])
h3_flat=tf.reshape(h3, [-1,dim3])
D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label')
D_labels = tf.nn.tanh(D_labels_logits)
variables = tf.contrib.framework.get_variables(vs)
return D_labels,variables
def create_discriminator(hr_images_fake, hr_images, cfg):
n_layers = 3
layers = []
input = tf.concat([hr_images_fake, hr_images ], axis = 3)
conv = slim.conv2d(input, cfg.ndf, [3,3], stride = 2, activation_fn = lrelu, scope = 'layers%d'%(0))
layers.append(conv)
for i in range(n_layers):
out_channels = cfg.ndf*min(2**(i+1), 8)
stride = 1 if i == n_layers -1 else 2
conv = slim.conv2d(layers[-1], out_channels, [3,3], stride = stride, activation_fn = lrelu, scope = 'layers_%d'%(i+2))
layers.append(conv)
conv = slim.conv2d(layers[-1], 1, [3,3], stride = 1)
output = tf.sigmoid(conv)
return output
def _detection_classifier(self, maps, ksize, cross_links=False, scope=None):
"""
Create a SegLink detection classifier on a feature layer
"""
with tf.variable_scope(scope):
seg_depth = N_SEG_CLASSES
if cross_links:
lnk_depth = N_LNK_CLASSES * (N_LOCAL_LINKS + N_CROSS_LINKS)
else:
lnk_depth = N_LNK_CLASSES * N_LOCAL_LINKS
reg_depth = OFFSET_DIM
map_depth = maps.get_shape()[3].value
seg_maps = ops.conv2d(maps, map_depth, seg_depth, ksize, 1, 'SAME', scope='conv_cls')
lnk_maps = ops.conv2d(maps, map_depth, lnk_depth, ksize, 1, 'SAME', scope='conv_lnk')
reg_maps = ops.conv2d(maps, map_depth, reg_depth, ksize, 1, 'SAME', scope='conv_reg')
return seg_maps, lnk_maps, reg_maps
def discriminator(self, opts, input_, is_training,
prefix='DISCRIMINATOR', reuse=False):
"""Encoder function, suitable for simple toy experiments.
"""
num_filters = opts['d_num_filters']
with tf.variable_scope(prefix, reuse=reuse):
h0 = ops.conv2d(opts, input_, num_filters / 8, scope='h0_conv')
h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
h0 = tf.nn.relu(h0)
h1 = ops.conv2d(opts, h0, num_filters / 4, scope='h1_conv')
h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
h1 = tf.nn.relu(h1)
h2 = ops.conv2d(opts, h1, num_filters / 2, scope='h2_conv')
h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
h2 = tf.nn.relu(h2)
h3 = ops.conv2d(opts, h2, num_filters, scope='h3_conv')
h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
h3 = tf.nn.relu(h3)
# Already has NaNs!!
latent_mean = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin')
log_latent_sigmas = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin_sigma')
return latent_mean, log_latent_sigmas
def discriminator(self, opts, input_, is_training,
prefix='DISCRIMINATOR', reuse=False):
"""Discriminator function, suitable for simple toy experiments.
"""
num_filters = opts['d_num_filters']
with tf.variable_scope(prefix, reuse=reuse):
h0 = ops.conv2d(opts, input_, num_filters, scope='h0_conv')
h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
h0 = ops.lrelu(h0)
h1 = ops.conv2d(opts, h0, num_filters * 2, scope='h1_conv')
h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
h1 = ops.lrelu(h1)
h2 = ops.conv2d(opts, h1, num_filters * 4, scope='h2_conv')
h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
h2 = ops.lrelu(h2)
h3 = ops.linear(opts, h2, 1, scope='h3_lin')
return h3
def discriminator(self, image, y=None, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
s = self.output_size
if np.mod(s, 16) == 0:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4
else:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
if not self.config.use_kernel:
return tf.nn.sigmoid(h2), h2
else:
return tf.nn.sigmoid(h2), h2, h1, h0
def discriminator(self, image, y=None, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
s = self.output_size
if np.mod(s, 16) == 0:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4
else:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
if not self.config.use_kernel:
return tf.nn.sigmoid(h2), h2
else:
return tf.nn.sigmoid(h2), h2, h1, h0
def discriminator(self, image, y=None, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
s = self.output_size
if np.mod(s, 16) == 0:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')
return tf.nn.sigmoid(h4), h4
else:
h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
if not self.config.use_kernel:
return tf.nn.sigmoid(h2), h2
else:
return tf.nn.sigmoid(h2), h2, h1, h0
def inception_v3_parameters(weight_decay=0.00004, stddev=0.1,
batch_norm_decay=0.9997, batch_norm_epsilon=0.001):
"""Yields the scope with the default parameters for inception_v3.
Args:
weight_decay: the weight decay for weights variables.
stddev: standard deviation of the truncated guassian weight distribution.
batch_norm_decay: decay for the moving average of batch_norm momentums.
batch_norm_epsilon: small float added to variance to avoid dividing by zero.
Yields:
a arg_scope with the parameters needed for inception_v3.
"""
# Set weight_decay for weights in Conv and FC layers.
with scopes.arg_scope([ops.conv2d, ops.fc],
weight_decay=weight_decay):
# Set stddev, activation and parameters for batch_norm.
with scopes.arg_scope([ops.conv2d],
stddev=stddev,
activation=tf.nn.relu,
batch_norm_params={
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon}) as arg_scope:
yield arg_scope
def discriminate(self, x_var, reuse=False):
with tf.variable_scope("discriminator") as scope:
if reuse:
scope.reuse_variables()
conv1 = tf.nn.relu(conv2d(x_var, output_dim=32, name='dis_conv1'))
conv2= tf.nn.relu(batch_normal(conv2d(conv1, output_dim=128, name='dis_conv2'), scope='dis_bn1', reuse=reuse))
conv3= tf.nn.relu(batch_normal(conv2d(conv2, output_dim=256, name='dis_conv3'), scope='dis_bn2', reuse=reuse))
conv4 = conv2d(conv3, output_dim=256, name='dis_conv4')
middle_conv = conv4
conv4= tf.nn.relu(batch_normal(conv4, scope='dis_bn3', reuse=reuse))
conv4= tf.reshape(conv4, [self.batch_size, -1])
fl = tf.nn.relu(batch_normal(fully_connect(conv4, output_size=256, scope='dis_fully1'), scope='dis_bn4', reuse=reuse))
output = fully_connect(fl , output_size=1, scope='dis_fully2')
return middle_conv, output
def encode_y(self, x, weights, biases):
c1 = tf.nn.relu(batch_normal(conv2d(x, weights['e1'], biases['eb1']), scope='eny_bn1'))
c2 = tf.nn.relu(batch_normal(conv2d(c1, weights['e2'], biases['eb2']), scope='eny_bn2'))
c2 = tf.reshape(c2, [self.batch_size, 128 * 7 * 7])
result_y = tf.nn.sigmoid(fully_connect(c2, weights['e3'], biases['eb3']))
#y_vec = tf.one_hot(tf.arg_max(result_y, 1), 10)
return result_y
def _vgg_conv_relu(self, x, n_in, n_out, scope, fc7=False, trainable=True):
with tf.variable_scope(scope):
if fc7 == False:
conv = ops.conv2d(x, n_in, n_out, 3, trainable=trainable, relu=True)
else:
conv = ops.conv2d(x, n_in, n_out, 1, trainable=trainable, relu=True)
return conv
def compute_moments(_inputs, moments=[2, 3]):
"""From an image input, compute moments"""
_inputs_sq = tf.square(_inputs)
_inputs_cube = tf.pow(_inputs, 3)
height = int(_inputs.get_shape()[1])
width = int(_inputs.get_shape()[2])
channels = int(_inputs.get_shape()[3])
def ConvFlatten(x, kernel_size):
# w_sum = tf.ones([kernel_size, kernel_size, channels, 1]) / (kernel_size * kernel_size * channels)
w_sum = tf.eye(num_rows=channels, num_columns=channels, batch_shape=[kernel_size * kernel_size])
w_sum = tf.reshape(w_sum, [kernel_size, kernel_size, channels, channels])
w_sum = w_sum / (kernel_size * kernel_size)
sum_ = tf.nn.conv2d(x, w_sum, strides=[1, 1, 1, 1], padding='VALID')
size = prod_dim(sum_)
assert size == (height - kernel_size + 1) * (width - kernel_size + 1) * channels, size
return tf.reshape(sum_, [-1, size])
outputs = []
for size in [3, 4, 5]:
mean = ConvFlatten(_inputs, size)
square = ConvFlatten(_inputs_sq, size)
var = square - tf.square(mean)
if 2 in moments:
outputs.append(var)
if 3 in moments:
cube = ConvFlatten(_inputs_cube, size)
skewness = cube - 3.0 * mean * var - tf.pow(mean, 3) # Unnormalized
outputs.append(skewness)
return tf.concat(outputs, 1)
def began_dec(self, opts, noise, is_training, reuse, keep_prob):
""" Architecture reported here: https://arxiv.org/pdf/1703.10717.pdf
"""
output_shape = self._data.data_shape
num_units = opts['g_num_filters']
num_layers = opts['g_num_layers']
batch_size = tf.shape(noise)[0]
h0 = ops.linear(
opts, noise, num_units * 8 * 8, scope='h0_lin')
h0 = tf.reshape(h0, [-1, 8, 8, num_units])
layer_x = h0
for i in xrange(num_layers):
if i % 3 < 2:
# Don't change resolution
layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i)
layer_x = tf.nn.elu(layer_x)
else:
if i != num_layers - 1:
# Upsampling by factor of 2 with NN
scale = 2 ** (i / 3 + 1)
layer_x = ops.upsample_nn(layer_x, [scale * 8, scale * 8],
scope='h%d_upsample' % i, reuse=reuse)
# Skip connection
append = ops.upsample_nn(h0, [scale * 8, scale * 8],
scope='h%d_skipup' % i, reuse=reuse)
layer_x = tf.concat([layer_x, append], axis=3)
last_h = ops.conv2d(opts, layer_x, output_shape[-1], d_h=1, d_w=1, scope='hlast_conv')
if opts['input_normalize_sym']:
return tf.nn.tanh(last_h)
else:
return tf.nn.sigmoid(last_h)
def dcgan_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.):
num_units = opts['e_num_filters']
num_layers = opts['e_num_layers']
layer_x = input_
for i in xrange(num_layers):
scale = 2**(num_layers-i-1)
layer_x = ops.conv2d(opts, layer_x, num_units / scale, scope='h%d_conv' % i)
if opts['batch_norm']:
layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
layer_x = tf.nn.relu(layer_x)
if opts['dropout']:
_keep_prob = tf.minimum(
1., 0.9 - (0.9 - keep_prob) * float(i + 1) / num_layers)
layer_x = tf.nn.dropout(layer_x, _keep_prob)
if opts['e_3x3_conv'] > 0:
before = layer_x
for j in range(opts['e_3x3_conv']):
layer_x = ops.conv2d(opts, layer_x, num_units / scale, d_h=1, d_w=1,
scope='conv2d_3x3_%d_%d' % (i, j),
conv_filters_dim=3)
layer_x = tf.nn.relu(layer_x)
layer_x += before # Residual connection.
if opts['e_is_random']:
latent_mean = ops.linear(
opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
log_latent_sigmas = ops.linear(
opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma')
return latent_mean, log_latent_sigmas
else:
return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def began_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.):
num_units = opts['e_num_filters']
assert num_units == opts['g_num_filters'], 'BEGAN requires same number of filters in encoder and decoder'
num_layers = opts['e_num_layers']
layer_x = ops.conv2d(opts, input_, num_units, scope='h_first_conv')
for i in xrange(num_layers):
if i % 3 < 2:
if i != num_layers - 2:
ii = i - (i / 3)
scale = (ii + 1 - ii / 2)
else:
ii = i - (i / 3)
scale = (ii - (ii - 1) / 2)
layer_x = ops.conv2d(opts, layer_x, num_units * scale, d_h=1, d_w=1, scope='h%d_conv' % i)
layer_x = tf.nn.elu(layer_x)
else:
if i != num_layers - 1:
layer_x = ops.downsample(layer_x, scope='h%d_maxpool' % i, reuse=reuse)
# Tensor should be [N, 8, 8, filters] right now
if opts['e_is_random']:
latent_mean = ops.linear(
opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
log_latent_sigmas = ops.linear(
opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma')
return latent_mean, log_latent_sigmas
else:
return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def _vgg_conv_relu(self, x, n_in, n_out, scope):
with tf.variable_scope(scope):
conv = ops.conv2d(x, n_in, n_out, 3, 1, p='SAME')
relu = tf.nn.relu(conv)
return relu
def dis_net(self, images, y, reuse=False):
with tf.variable_scope("discriminator") as scope:
if reuse == True:
scope.reuse_variables()
# mnist data's shape is (28 , 28 , 1)
yb = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim])
# concat
concat_data = conv_cond_concat(images, yb)
conv1, w1 = conv2d(concat_data, output_dim=10, name='dis_conv1')
tf.add_to_collection('weight_1', w1)
conv1 = lrelu(conv1)
conv1 = conv_cond_concat(conv1, yb)
tf.add_to_collection('ac_1', conv1)
conv2, w2 = conv2d(conv1, output_dim=64, name='dis_conv2')
tf.add_to_collection('weight_2', w2)
conv2 = lrelu(batch_normal(conv2, scope='dis_bn1'))
tf.add_to_collection('ac_2', conv2)
conv2 = tf.reshape(conv2, [self.batch_size, -1])
conv2 = tf.concat([conv2, y], 1)
f1 = lrelu(batch_normal(fully_connect(conv2, output_size=1024, scope='dis_fully1'), scope='dis_bn2', reuse=reuse))
f1 = tf.concat([f1, y], 1)
out = fully_connect(f1, output_size=1, scope='dis_fully2')
return tf.nn.sigmoid(out), out
def Encode(self, x):
with tf.variable_scope('encode') as scope:
conv1 = tf.nn.relu(batch_normal(conv2d(x, output_dim=64, name='e_c1'), scope='e_bn1'))
conv2 = tf.nn.relu(batch_normal(conv2d(conv1, output_dim=128, name='e_c2'), scope='e_bn2'))
conv3 = tf.nn.relu(batch_normal(conv2d(conv2 , output_dim=256, name='e_c3'), scope='e_bn3'))
conv3 = tf.reshape(conv3, [self.batch_size, 256 * 8 * 8])
fc1 = tf.nn.relu(batch_normal(fully_connect(conv3, output_size=1024, scope='e_f1'), scope='e_bn4'))
z_mean = fully_connect(fc1 , output_size=128, scope='e_f2')
z_sigma = fully_connect(fc1, output_size=128, scope='e_f3')
return z_mean, z_sigma
def discriminator(hparams, x, scope_name, train, reuse):
with tf.variable_scope(scope_name) as scope:
if reuse:
scope.reuse_variables()
d_bn1 = ops.batch_norm(name='d_bn1')
d_bn2 = ops.batch_norm(name='d_bn2')
d_bn3 = ops.batch_norm(name='d_bn3')
h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv'))
h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv')
h1 = ops.lrelu(d_bn1(h1, train=train))
h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv')
h2 = ops.lrelu(d_bn2(h2, train=train))
h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv')
h3 = ops.lrelu(d_bn3(h3, train=train))
h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin')
d_logit = h4
d = tf.nn.sigmoid(d_logit)
return d, d_logit
def discriminator(hparams, x, train, reuse):
if reuse:
tf.get_variable_scope().reuse_variables()
d_bn1 = ops.batch_norm(name='d_bn1')
d_bn2 = ops.batch_norm(name='d_bn2')
d_bn3 = ops.batch_norm(name='d_bn3')
h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv'))
h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv')
h1 = ops.lrelu(d_bn1(h1, train=train))
h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv')
h2 = ops.lrelu(d_bn2(h2, train=train))
h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv')
h3 = ops.lrelu(d_bn3(h3, train=train))
h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin')
d_logit = h4
d = tf.nn.sigmoid(d_logit)
return d, d_logit
def cnn(self, state, input_dims, num_actions):
w = {}
initializer = tf.truncated_normal_initializer(0, 0.02)
activation_fn = tf.nn.relu
state = tf.transpose(state, perm=[0, 2, 3, 1])
l1, w['l1_w'], w['l1_b'] = conv2d(state,
32, [8, 8], [4, 4], initializer, activation_fn, 'NHWC', name='l1')
l2, w['l2_w'], w['l2_b'] = conv2d(l1,
64, [4, 4], [2, 2], initializer, activation_fn, 'NHWC', name='l2')
shape = l2.get_shape().as_list()
l2_flat = tf.reshape(l2, [-1, reduce(lambda x, y: x * y, shape[1:])])
l3, w['l3_w'], w['l3_b'] = linear(l2_flat, 256, activation_fn=activation_fn, name='value_hid')
value, w['val_w_out'], w['val_w_b'] = linear(l3, 1, name='value_out')
V = tf.reshape(value, [-1])
pi_, w['pi_w_out'], w['pi_w_b'] = \
linear(l3, num_actions, activation_fn=tf.nn.softmax, name='pi_out')
sums = tf.tile(tf.expand_dims(tf.reduce_sum(pi_, 1), 1), [1, num_actions])
pi = pi_ / sums
#A3C is l1 = (16, [8,8], [4,4], ReLu), l2 = (32, [4,4], [2,2], ReLu), l3 = (256, Conn, ReLu), V = (1, Conn, Lin), pi = (#act, Conn, Softmax)
return pi, V, [ v for v in w.values() ]
# Adapted from github.com/devsisters/DQN-tensorflow/
def DiscriminatorCNN(image, config, reuse=None):
'''
Discriminator for GAN model.
image : batch_size x 64x64x3 image
config : see causal_dcgan/config.py
reuse : pass True if not calling for first time
returns: probabilities(real)
: logits(real)
: first layer activation used to estimate z from
: variables list
'''
with tf.variable_scope("discriminator",reuse=reuse) as vs:
d_bn1 = batch_norm(name='d_bn1')
d_bn2 = batch_norm(name='d_bn2')
d_bn3 = batch_norm(name='d_bn3')
if not config.stab_proj:
h0 = lrelu(conv2d(image, config.df_dim, name='d_h0_conv'))#16,32,32,64
else:#method to restrict disc from winning
#I think this is equivalent to just not letting disc optimize first layer
#and also removing nonlinearity
#k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
#paper used 8x8 kernel, but I'm using 5x5 because it is more similar to my achitecture
#n_projs=config.df_dim#64 instead of 32 in paper
n_projs=config.n_stab_proj#64 instead of 32 in paper
print("WARNING:STAB_PROJ active, using ",n_projs," projections")
w_proj = tf.get_variable('w_proj', [5, 5, image.get_shape()[-1],n_projs],
initializer=tf.truncated_normal_initializer(stddev=0.02),trainable=False)
conv = tf.nn.conv2d(image, w_proj, strides=[1, 2, 2, 1], padding='SAME')
b_proj = tf.get_variable('b_proj', [n_projs],#does nothing
initializer=tf.constant_initializer(0.0),trainable=False)
h0=tf.nn.bias_add(conv,b_proj)
h1_ = lrelu(d_bn1(conv2d(h0, config.df_dim*2, name='d_h1_conv')))#16,16,16,128
h1 = add_minibatch_features(h1_, config.df_dim)
h2 = lrelu(d_bn2(conv2d(h1, config.df_dim*4, name='d_h2_conv')))#16,16,16,248
h3 = lrelu(d_bn3(conv2d(h2, config.df_dim*8, name='d_h3_conv')))
#print('h3shape: ',h3.get_shape().as_list())
#print('8df_dim:',config.df_dim*8)
#dim3=tf.reduce_prod(tf.shape(h3)[1:])
dim3=np.prod(h3.get_shape().as_list()[1:])
h3_flat=tf.reshape(h3, [-1,dim3])
h4 = linear(h3_flat, 1, 'd_h3_lin')
prob=tf.nn.sigmoid(h4)
variables = tf.contrib.framework.get_variables(vs,collection=tf.GraphKeys.TRAINABLE_VARIABLES)
return prob, h4, h1_, variables
def create_generator(hr_image_bilinear, num_channels, cfg):
layers = []
print(hr_image_bilinear.get_shape())
conv = slim.conv2d(hr_image_bilinear, cfg.ngf, [3,3], stride = 2, scope = 'encoder0')
layers.append(conv)
layers_specs = [
cfg.ngf*2,
cfg.ngf*4,
cfg.ngf*8,
cfg.ngf*8,
cfg.ngf*8,
cfg.ngf*8,
]
for idx, out_channels in enumerate(layers_specs):
with slim.arg_scope([slim.conv2d], activation_fn = lrelu, stride = 2, padding = 'VALID'):
conv = conv2d(layers[-1], out_channels, scope = 'encoder%d'%(idx+1))
print(conv.get_shape())
layers.append(conv)
### decoder part
layers_specs = [
(cfg.ngf*8, 0.5),
(cfg.ngf*8, 0.5),
(cfg.ngf*8, 0.0),
(cfg.ngf*4, 0.0),
(cfg.ngf*2, 0.0),
(cfg.ngf, 0.0)
]
num_encoder_layers = len(layers)
for decoder_layer_idx, (out_channels, dropout) in enumerate(layers_specs):
skip_layer = num_encoder_layers - decoder_layer_idx - 1
with slim.arg_scope([slim.conv2d], activation_fn = lrelu):
if decoder_layer_idx == 0:
input = layers[-1]
else:
input = tf.concat([layers[-1], layers[skip_layer]], axis = 3)
output = upsample_layer(input, out_channels, mode = 'deconv')
print(output.get_shape())
if dropout > 0.0:
output = tf.nn.dropout(output, keep_prob = 1 - dropout)
layers.append(output)
input = tf.concat([layers[-1],layers[0]], axis = 3)
output = slim.conv2d_transpose(input, num_channels, [4,4], stride = 2, activation_fn = tf.tanh)
return output
def __call__(self, input_, y):
batch_size, y_dim = y.get_shape().as_list()
batch_size_, height, width, c_dim = input_.get_shape().as_list()
assert batch_size == batch_size_
assert (self._input_size == width) and (self._input_size == height)
h0_size = int(self._input_size / 2)
h1_size = int(self._input_size / 4)
with tf.variable_scope(self._name):
yb = tf.reshape(y, shape=[-1, 1, 1, y_dim])
# dim(x) = (100, 28, 28, 11)
x = tf.concat([input_, yb*tf.ones([batch_size, self._input_size, self._input_size, y_dim])], axis=3)
h0 = ops.leaky_relu(
ops.conv2d(x, c_dim + y_dim, reuse=self._reuse, name='d_conv0'),
slope=0.2
)
h0 = tf.concat([h0, yb*tf.ones([batch_size, h0_size, h0_size, y_dim])], axis=3) # (100, 14, 14, 21)
h1 = ops.leaky_relu(
ops.batch_norm(
ops.conv2d(h0, c_dim + self._ndf, reuse=self._reuse, name='d_conv1'),
is_training=self._is_training,
reuse=self._reuse,
name_scope='d_bn1'
),
slope=0.2
)
h1 = tf.reshape(h1, [batch_size, h1_size*h1_size*(c_dim+self._ndf)])
h1 = tf.concat([h1, y], axis=1) # (100, 28*28*(1+64)+10)
h2 = ops.leaky_relu(
ops.batch_norm(
ops.fc(h1, self._fc_dim, reuse=self._reuse, name='d_fc2'),
is_training=self._is_training,
reuse=self._reuse,
name_scope='d_bn2'
),
slope=0.2
)
h2 = tf.concat([h2, y], axis=1) # (100, 794)
# h3 = tf.nn.sigmoid(
h3 = ops.fc(h2, 1, reuse=self._reuse, name='d_fc3')
# )
self._reuse = True
return h3 # (100, 1)
def vgg_16(inputs,
is_training=False,
dropout_keep_prob=0.5,
scope='vgg_16',
fc_conv_padding='VALID', reuse=None):
inputs = inputs * 255.0
inputs -= tf.constant([123.68, 116.779, 103.939], dtype=tf.float32)
with tf.variable_scope(scope, 'vgg_16', [inputs], reuse=reuse) as sc:
end_points_collection = sc.name + '_end_points'
end_points = {}
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=end_points_collection):
end_points['pool0'] = inputs
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
end_points['pool1'] = net
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
end_points['pool2'] = net
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool3')
end_points['pool3'] = net
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
net = slim.max_pool2d(net, [2, 2], scope='pool4')
end_points['pool4'] = net
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [2, 2], scope='pool5')
end_points['pool5'] = net
# # Use conv2d instead of fully_connected layers.
# net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6')
# net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
# scope='dropout6')
# net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
# net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
# scope='dropout7')
# net = slim.conv2d(net, num_classes, [1, 1],
# activation_fn=None,
# normalizer_fn=None,
# scope='fc8')
# Convert end_points_collection into a end_point dict.
# end_points = slim.utils.convert_collection_to_dict(end_points_collection)
return net, end_points