def __init__(self):
Module.__init__(self)
self.add_method('+', self.addition)
self.add_method('-', self.subtraction)
self.add_method('*', self.multiplication)
self.add_method('/', self.division)
self.add_method('%', self.module)
self.add_method('**', self.power)
self.add_method('abs', self.abs)
self.add_method('min', self.minimum)
self.add_method('max', self.maximum)
self.add_method('strcat', self.strcat)
self.add_method('substr', self.substr)
self.add_method('strlen', self.strlen)
self.add_method('strindex', self.strindex)
self.add_method('symcat', self.symcat)
self.add_method('randint', self.randint)
random.seed(time.time())
python类abs()的实例源码
def number_of_args(fn):
"""Return the number of positional arguments for a function, or None if the number is variable.
Looks inside any decorated functions."""
try:
if hasattr(fn, '__wrapped__'):
return number_of_args(fn.__wrapped__)
if any(p.kind == p.VAR_POSITIONAL for p in signature(fn).parameters.values()):
return None
else:
return sum(p.kind in (p.POSITIONAL_ONLY, p.POSITIONAL_OR_KEYWORD) for p in signature(fn).parameters.values())
except ValueError:
# signatures don't work for built-in operators, so check for a few explicitly
UNARY_OPS = [len, op.not_, op.truth, op.abs, op.index, op.inv, op.invert, op.neg, op.pos]
BINARY_OPS = [op.lt, op.le, op.gt, op.ge, op.eq, op.ne, op.is_, op.is_not, op.add, op.and_, op.floordiv, op.lshift, op.mod, op.mul, op.or_, op.pow, op.rshift, op.sub, op.truediv, op.xor, op.concat, op.contains, op.countOf, op.delitem, op.getitem, op.indexOf]
TERNARY_OPS = [op.setitem]
if fn in UNARY_OPS:
return 1
elif fn in BINARY_OPS:
return 2
elif fn in TERNARY_OPS:
return 3
else:
raise NotImplementedError("Bult-in operator {} not supported".format(fn))
def __abs__(self):
return self.apply_op1(operator.abs)
def __abs__(self):
return abs(self.trace)
def foo2():
return map(o.abs, [1, 2, 3])
def abs(self, *args):
if not len(args) is 1:
raise EvaluateException('Abs requires 1 parameter!')
elif not isinstance(args[0], NumberType):
raise EvaluateException('Abs requires all parameters to be numbers!')
return op.abs(args[0])
def test_abs_array(self):
self.check_array_op(operator.abs)
def test_abs_zerodim(self):
self.check_zerodim_op(operator.abs)
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertEqual(operator.abs(-1), 1)
self.assertEqual(operator.abs(1), 1)
def __abs__(self):
return NonStandardInteger(operator.abs(self.val))
def test_registry_association():
ds = fake_random_ds(64, nprocs=1, length_unit=10)
a = ds.quan(3, 'cm')
b = YTQuantity(4, 'm')
c = ds.quan(6, '')
d = 5
assert_equal(id(a.units.registry), id(ds.unit_registry))
def binary_op_registry_comparison(op):
e = op(a, b)
f = op(b, a)
g = op(c, d)
h = op(d, c)
assert_equal(id(e.units.registry), id(ds.unit_registry))
assert_equal(id(f.units.registry), id(b.units.registry))
assert_equal(id(g.units.registry), id(h.units.registry))
assert_equal(id(g.units.registry), id(ds.unit_registry))
def unary_op_registry_comparison(op):
c = op(a)
d = op(b)
assert_equal(id(c.units.registry), id(ds.unit_registry))
assert_equal(id(d.units.registry), id(b.units.registry))
binary_ops = [operator.add, operator.sub, operator.mul,
operator.truediv]
if hasattr(operator, "div"):
binary_ops.append(operator.div)
for op in binary_ops:
binary_op_registry_comparison(op)
for op in [operator.abs, operator.neg, operator.pos]:
unary_op_registry_comparison(op)
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertTrue(operator.abs(-1) == 1)
self.assertTrue(operator.abs(1) == 1)
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertTrue(operator.abs(-1) == 1)
self.assertTrue(operator.abs(1) == 1)
def round_significant(x, n=1):
"""Round x to n significant digits."""
return 0 if x==0 else round(x, -int(floor(log10(abs(x)))) + (n-1))
def floor_significant(x, n=1):
"""Floor x to n significant digits."""
return 0 if x==0 else floor_digits(x, -int(floor(log10(abs(x)))) + (n-1))
def ceil_significant(x, n=1):
"""Ceil x to n significant digits."""
return 0 if x==0 else ceil_digits(x, -int(floor(log10(abs(x)))) + (n-1))
def test_abs_array(self):
self.check_array_op(operator.abs)
def test_abs_zerodim(self):
self.check_zerodim_op(operator.abs)
def setUp(self):
super(CoreUnaryOpsTest, self).setUp()
self.ops = [
('abs', operator.abs, tf.abs, core.abs_function),
('neg', operator.neg, tf.neg, core.neg),
# TODO(shoyer): add unary + to core TensorFlow
('pos', None, None, None),
('sign', None, tf.sign, core.sign),
('reciprocal', None, tf.reciprocal, core.reciprocal),
('square', None, tf.square, core.square),
('round', None, tf.round, core.round_function),
('sqrt', None, tf.sqrt, core.sqrt),
('rsqrt', None, tf.rsqrt, core.rsqrt),
('log', None, tf.log, core.log),
('exp', None, tf.exp, core.exp),
('log', None, tf.log, core.log),
('ceil', None, tf.ceil, core.ceil),
('floor', None, tf.floor, core.floor),
('cos', None, tf.cos, core.cos),
('sin', None, tf.sin, core.sin),
('tan', None, tf.tan, core.tan),
('acos', None, tf.acos, core.acos),
('asin', None, tf.asin, core.asin),
('atan', None, tf.atan, core.atan),
('lgamma', None, tf.lgamma, core.lgamma),
('digamma', None, tf.digamma, core.digamma),
('erf', None, tf.erf, core.erf),
('erfc', None, tf.erfc, core.erfc),
('lgamma', None, tf.lgamma, core.lgamma),
]
total_size = np.prod([v.size for v in self.original_lt.axes.values()])
self.test_lt = core.LabeledTensor(
tf.cast(self.original_lt, tf.float32) / total_size,
self.original_lt.axes)
def __abs__(self):
return NonStandardInteger(operator.abs(self.val))
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertEqual(operator.abs(-1), 1)
self.assertEqual(operator.abs(1), 1)
def __abs__(self): return _op1(self, operator.abs)
def __init__(self, start=0.0, end=1.0):
super(UniformNode, self).__init__()
self._shift = min(start, end)
self._scale = abs(end - start)
self._describe = 'uniform(%f, %f)' % (start, end)
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertTrue(operator.abs(-1) == 1)
self.assertTrue(operator.abs(1) == 1)
def test_abs(self):
self.assertRaises(TypeError, operator.abs)
self.assertRaises(TypeError, operator.abs, None)
self.assertTrue(operator.abs(-1) == 1)
self.assertTrue(operator.abs(1) == 1)
def __abs__(self):
return NonStandardInteger(operator.abs(self.val))
def norm_cdf(x, mu=0, sigma=1):
"""
Parameters
----------
x :
mu : float
distribution's mean
sigma : float
distribution's standard deviation
Returns
-------
float
pdf or cdf value, depending on input flag ``f``
Notes
-----
http://stackoverflow.com/questions/809362/how-to-calculate-cumulative-normal-distribution-in-python
Examples
--------
Compares total absolute error for 100 values
>>> from scipy.stats import norm
>>> sum( [abs(Util.norm_cdf(x) - norm.cdf(x)) for x in range(100)])
3.3306690738754696e-16
"""
y = 0.5 * (1 - math.erf(-(x - mu)/(sigma * math.sqrt(2.0))))
if y > 1: y = 1
return y
def norm_pdf(x, mu=0, sigma=1):
u = (x - mu)/abs(sigma)
y = (1/(math.sqrt(2 * math.pi) * abs(sigma))) * math.exp(-u*u/2)
return y
def __abs__(self): return Vec(map(op.abs, self))
core_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 36
收藏 0
点赞 0
评论 0
def setUp(self):
super(CoreUnaryOpsTest, self).setUp()
self.ops = [
('abs', operator.abs, math_ops.abs, core.abs_function),
('neg', operator.neg, math_ops.negative, core.neg),
# TODO(shoyer): add unary + to core TensorFlow
('pos', None, None, None),
('sign', None, math_ops.sign, core.sign),
('reciprocal', None, math_ops.reciprocal, core.reciprocal),
('square', None, math_ops.square, core.square),
('round', None, math_ops.round, core.round_function),
('sqrt', None, math_ops.sqrt, core.sqrt),
('rsqrt', None, math_ops.rsqrt, core.rsqrt),
('log', None, math_ops.log, core.log),
('exp', None, math_ops.exp, core.exp),
('log', None, math_ops.log, core.log),
('ceil', None, math_ops.ceil, core.ceil),
('floor', None, math_ops.floor, core.floor),
('cos', None, math_ops.cos, core.cos),
('sin', None, math_ops.sin, core.sin),
('tan', None, math_ops.tan, core.tan),
('acos', None, math_ops.acos, core.acos),
('asin', None, math_ops.asin, core.asin),
('atan', None, math_ops.atan, core.atan),
('lgamma', None, math_ops.lgamma, core.lgamma),
('digamma', None, math_ops.digamma, core.digamma),
('erf', None, math_ops.erf, core.erf),
('erfc', None, math_ops.erfc, core.erfc),
('lgamma', None, math_ops.lgamma, core.lgamma),
]
total_size = np.prod([v.size for v in self.original_lt.axes.values()])
self.test_lt = core.LabeledTensor(
math_ops.cast(self.original_lt, dtypes.float32) / total_size,
self.original_lt.axes)