def __iadd__(self, other):
if not isinstance(other, (PyPtxt, int)):
raise TypeError("PyPtxt '+=' error: lhs must be of type PyPtxt or int instead of type " + str(type(other)))
from operator import add, mod
if isinstance(other, PyPtxt):
self = PyPtxt([mod(elt, self.__pyfhel.getModulus())
for elt in
list(map(add, self.getPtxt(), other.getPtxt()))],
self.getPyfhel())
else:
constPtxt = [other for _ in range(self.__length)]
self = PyPtxt([mod(elt, self.__pyfhel.getModulus())
for elt in
list(map(add, self.getPtxt(), constPtxt))],
self.getPyfhel())
del constPtxt
return self
# SUBSTRACT:
# '-' operator
python类mod()的实例源码
def test_modulus_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)[()]
b = np.array(sg2*19, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_modulus_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)[()]
b = np.array(sg2*6e-8, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def test_modulus_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)[()]
b = np.array(sg2*19, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_modulus_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)[()]
b = np.array(sg2*6e-8, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def getSymbolikImport(vw, impname):
"""
Resolve (hopefully) and return a symbolik import emulation
function for the given import by name.
"""
modbase = vw.getMeta('SymbolikImportEmulation')
if modbase is None:
return None
nameparts = impname.split('.')
# FIXME *.malloc!
# FIXME cache
mod = vw.loadModule(modbase)
return vstruct.resolve(mod, nameparts)
def __init__(self, code, objects=None):
self._OPERATORS = [
('|', operator.or_),
('^', operator.xor),
('&', operator.and_),
('>>', operator.rshift),
('<<', operator.lshift),
('-', operator.sub),
('+', operator.add),
('%', operator.mod),
('/', operator.truediv),
('*', operator.mul),
]
self._ASSIGN_OPERATORS = [(op + '=', opfunc)
for op, opfunc in self._OPERATORS]
self._ASSIGN_OPERATORS.append(('=', lambda cur, right: right))
self._VARNAME_PATTERN = r'[a-zA-Z_$][a-zA-Z_$0-9]*'
if objects is None:
objects = {}
self.code = code
self._functions = {}
self._objects = objects
def number_of_args(fn):
"""Return the number of positional arguments for a function, or None if the number is variable.
Looks inside any decorated functions."""
try:
if hasattr(fn, '__wrapped__'):
return number_of_args(fn.__wrapped__)
if any(p.kind == p.VAR_POSITIONAL for p in signature(fn).parameters.values()):
return None
else:
return sum(p.kind in (p.POSITIONAL_ONLY, p.POSITIONAL_OR_KEYWORD) for p in signature(fn).parameters.values())
except ValueError:
# signatures don't work for built-in operators, so check for a few explicitly
UNARY_OPS = [len, op.not_, op.truth, op.abs, op.index, op.inv, op.invert, op.neg, op.pos]
BINARY_OPS = [op.lt, op.le, op.gt, op.ge, op.eq, op.ne, op.is_, op.is_not, op.add, op.and_, op.floordiv, op.lshift, op.mod, op.mul, op.or_, op.pow, op.rshift, op.sub, op.truediv, op.xor, op.concat, op.contains, op.countOf, op.delitem, op.getitem, op.indexOf]
TERNARY_OPS = [op.setitem]
if fn in UNARY_OPS:
return 1
elif fn in BINARY_OPS:
return 2
elif fn in TERNARY_OPS:
return 3
else:
raise NotImplementedError("Bult-in operator {} not supported".format(fn))
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
test_classes.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_valueholder_integer_operations(x, y, operation, inplace_operation):
v = ValueHolder(x)
is_supported = operation not in unsupported_operations.get(type(x), set())
isdiv = ('div' in operation.__name__) or ('mod' in operation.__name__)
# forward...
with optional_contextmanager(pytest.raises(TypeError), ignore=is_supported):
with optional_contextmanager(pytest.raises(ZeroDivisionError), ignore=y or not isdiv):
assert operation(x, y) == operation(v, y)
# backward...
with optional_contextmanager(pytest.raises(TypeError), ignore=is_supported):
with optional_contextmanager(pytest.raises(ZeroDivisionError), ignore=x or not isdiv):
assert operation(y, x) == operation(y, v)
# in place...
if inplace_operation is not None:
with optional_contextmanager(pytest.raises(TypeError), ignore=is_supported):
with optional_contextmanager(pytest.raises(ZeroDivisionError), ignore=y or not isdiv):
inplace_operation(v, y)
assert v == operation(x, y)
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def execute(self, context):
x = 0
y = 0
for v in range(0, self.county):
if operator.mod(v, 2) == 0:
x = 0
else:
x = self.radius
for u in range(0, self.countx):
if self.mesh:
bpy.ops.mesh.primitive_cylinder_add(
vertices=self.segments, radius=self.radius + self.radsup, depth=self.height, location=(x, y, 0))
else:
bpy.ops.curve.primitive_bezier_circle_add(
radius=self.radius + self.radsup, location=(x, y, 0))
obj = bpy.context.active_object
obj.data.extrude = self.height
obj.data.dimensions = '2D'
obj.data.fill_mode = 'BOTH'
x += 2 * self.radius
y += 2 * self.radius * math.sqrt(0.75)
return {'FINISHED'}
def execute(self, context):
x = 0
y = 0
obj = bpy.context.active_object
if obj:
for v in range(0, self.county):
if self.trisq:
if operator.mod(v, 2) == 0:
x = 0
else:
x = self.radius
else:
x = 0
for u in range(0, self.countx):
if not (u == 0 and v == 0):
bpy.ops.object.duplicate(linked=self.linkedcopy)
obj = bpy.context.active_object
obj.location = (x, y, 0)
x += 2 * self.radius
if self.trisq:
y += 2 * self.radius * math.sqrt(0.75)
else:
y += 2 * self.radius
return {'FINISHED'}
def test_modulus_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)[()]
b = np.array(sg2*19, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_modulus_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)[()]
b = np.array(sg2*6e-8, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_modulus_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
if sg1 == -1 and dt1 in np.typecodes['UnsignedInteger']:
continue
if sg2 == -1 and dt2 in np.typecodes['UnsignedInteger']:
continue
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)[()]
b = np.array(sg2*19, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_modulus_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)[()]
b = np.array(sg2*6e-8, dtype=dt2)[()]
div = self.floordiv(a, b)
rem = self.mod(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def check_mod(Poly):
# This checks commutation, not numerical correctness
c1 = list(random((4,)) + .5)
c2 = list(random((3,)) + .5)
c3 = list(random((2,)) + .5)
p1 = Poly(c1)
p2 = Poly(c2)
p3 = Poly(c3)
p4 = p1 * p2 + p3
c4 = list(p4.coef)
assert_poly_almost_equal(p4 % p2, p3)
assert_poly_almost_equal(p4 % c2, p3)
assert_poly_almost_equal(c4 % p2, p3)
assert_poly_almost_equal(p4 % tuple(c2), p3)
assert_poly_almost_equal(tuple(c4) % p2, p3)
assert_poly_almost_equal(p4 % np.array(c2), p3)
assert_poly_almost_equal(np.array(c4) % p2, p3)
assert_poly_almost_equal(2 % p2, Poly([2]))
assert_poly_almost_equal(p2 % 2, Poly([0]))
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
if Poly is Polynomial:
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
else:
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
def test_float_mod(self):
# Check behaviour of % operator for IEEE 754 special cases.
# In particular, check signs of zeros.
mod = operator.mod
self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)
self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)
def add_globals(self):
"Add some Scheme standard procedures."
import math, cmath, operator as op
from functools import reduce
self.update(vars(math))
self.update(vars(cmath))
self.update({
'+':op.add, '-':op.sub, '*':op.mul, '/':op.itruediv, 'níl':op.not_, 'agus':op.and_,
'>':op.gt, '<':op.lt, '>=':op.ge, '<=':op.le, '=':op.eq, 'mod':op.mod,
'frmh':cmath.sqrt, 'dearbhluach':abs, 'uas':max, 'íos':min,
'cothrom_le?':op.eq, 'ionann?':op.is_, 'fad':len, 'cons':cons,
'ceann':lambda x:x[0], 'tóin':lambda x:x[1:], 'iarcheangail':op.add,
'liosta':lambda *x:list(x), 'liosta?': lambda x:isa(x,list),
'folamh?':lambda x: x == [], 'adamh?':lambda x: not((isa(x, list)) or (x == None)),
'boole?':lambda x: isa(x, bool), 'scag':lambda f, x: list(filter(f, x)),
'cuir_le':lambda proc,l: proc(*l), 'mapáil':lambda p, x: list(map(p, x)),
'lódáil':lambda fn: load(fn), 'léigh':lambda f: f.read(),
'oscail_comhad_ionchuir':open,'dún_comhad_ionchuir':lambda p: p.file.close(),
'oscail_comhad_aschur':lambda f:open(f,'w'), 'dún_comhad_aschur':lambda p: p.close(),
'dac?':lambda x:x is eof_object, 'luacháil':lambda x: evaluate(x),
'scríobh':lambda x,port=sys.stdout:port.write(to_string(x) + '\n')})
return self