def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
python类nper()的实例源码
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
def test_broadcast(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]),
[21.5449442, 20.76156441], 4)
assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000),
[-17.29165168, -16.66666667, -16.03647345,
-15.40102862, -14.76028842], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000),
[-74.998201, -75.62318601, -76.25337923,
-76.88882405, -77.52956425], 4)
assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0,
[0, 0, 1, 'end', 'begin']),
[-74.998201, -75.62318601, -75.62318601,
-76.88882405, -76.88882405], 4)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def test_nper(self):
assert_almost_equal(np.nper(0.075, -2000, 0, 100000.),
21.54, 2)
def test_nper2(self):
assert_almost_equal(np.nper(0.0, -2000, 0, 100000.),
50.0, 1)
def ppmt(rate, per, nper, pv, fv=0.0, when='end'):
"""
Compute the payment against loan principal.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100):
"""
Compute the rate of interest per period.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : float, optional
Starting guess for solving the rate of interest
tol : float, optional
Required tolerance for the solution
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document
Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated
Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12.
Organization for the Advancement of Structured Information Standards
(OASIS). Billerica, MA, USA. [ODT Document]. Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iter = 0
close = False
while (iter < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iter += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn