def test_complex_type_print():
"""Check formatting when using print """
for t in [np.complex64, np.cdouble, np.clongdouble]:
yield check_complex_type_print, t
python类cdouble()的实例源码
def test_export_record(self):
dt = [('a', 'b'),
('b', 'h'),
('c', 'i'),
('d', 'l'),
('dx', 'q'),
('e', 'B'),
('f', 'H'),
('g', 'I'),
('h', 'L'),
('hx', 'Q'),
('i', np.single),
('j', np.double),
('k', np.longdouble),
('ix', np.csingle),
('jx', np.cdouble),
('kx', np.clongdouble),
('l', 'S4'),
('m', 'U4'),
('n', 'V3'),
('o', '?'),
('p', np.half),
]
x = np.array(
[(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
asbytes('aaaa'), 'bbbb', asbytes(' '), True, 1.0)],
dtype=dt)
y = memoryview(x)
assert_equal(y.shape, (1,))
assert_equal(y.ndim, 1)
assert_equal(y.suboffsets, EMPTY)
sz = sum([np.dtype(b).itemsize for a, b in dt])
if np.dtype('l').itemsize == 4:
assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
else:
assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
# Cannot test if NPY_RELAXED_STRIDES_CHECKING changes the strides
if not (np.ones(1).strides[0] == np.iinfo(np.intp).max):
assert_equal(y.strides, (sz,))
assert_equal(y.itemsize, sz)
def test_array(self):
a = np.array([], float)
self.check_roundtrips(a)
a = np.array([[1, 2], [3, 4]], float)
self.check_roundtrips(a)
a = np.array([[1, 2], [3, 4]], int)
self.check_roundtrips(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle)
self.check_roundtrips(a)
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble)
self.check_roundtrips(a)
def test_basic(self):
ai32 = np.array([[1, 2], [3, 4]], dtype=np.int32)
af16 = np.array([[1, 2], [3, 4]], dtype=np.float16)
af32 = np.array([[1, 2], [3, 4]], dtype=np.float32)
af64 = np.array([[1, 2], [3, 4]], dtype=np.float64)
acs = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.csingle)
acd = np.array([[1+5j, 2+6j], [3+7j, 4+8j]], dtype=np.cdouble)
assert_(common_type(ai32) == np.float64)
assert_(common_type(af16) == np.float16)
assert_(common_type(af32) == np.float32)
assert_(common_type(af64) == np.float64)
assert_(common_type(acs) == np.csingle)
assert_(common_type(acd) == np.cdouble)
def get_complex_dtype(dtype):
return {single: csingle, double: cdouble,
csingle: csingle, cdouble: cdouble}[dtype]
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.solve(x, x).dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.inv(x).dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, dtype)
assert_equal(v.dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, get_complex_dtype(dtype))
assert_equal(v.dtype, get_complex_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_zero(self):
assert_equal(linalg.det([[0.0]]), 0.0)
assert_equal(type(linalg.det([[0.0]])), double)
assert_equal(linalg.det([[0.0j]]), 0.0)
assert_equal(type(linalg.det([[0.0j]])), cdouble)
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(np.linalg.det(x).dtype, dtype)
ph, s = np.linalg.slogdet(x)
assert_equal(s.dtype, get_real_dtype(dtype))
assert_equal(ph.dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w = np.linalg.eigvalsh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eigh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
assert_equal(v.dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def Sequence_Mask(\
self,
pipelineitem
):
if self.pipeline_started == True:
title = "Sequence " + pipelineitem.treeitem['name']
self.ancestor.GetPage(0).queue_info.put("Preparing mask array...")
filename_in = pipelineitem.input_filename.objectpath.GetValue()
filename_out = pipelineitem.output_filename.objectpath.GetValue()
frac_max = float(pipelineitem.max.value.GetValue())
frac_min = float(pipelineitem.min.value.GetValue())
try:
array = LoadArray(self, filename_in)
except:
msg = "Could not load array."
wx.CallAfter(self.UserMessage, title, msg)
self.pipeline_started = False
return
else:
mask = numpy.asarray(array, dtype=numpy.cdouble, order='C')
from ..lib.prfftw import rangereplace
rangereplace(mask, frac_min, frac_max, 0.0, 1.0)
try:
SaveArray(self, filename_out,mask)
except:
msg = "Could not save array."
wx.CallAfter(self.UserMessage, title, msg)
self.pipeline_started = False
return
def WrapArray2(array):
if array.shape[2] == 1:
b1 = numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[0]
b2 = numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[1]
b3 = numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[0]
b4 = numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[1]
v1 = numpy.vstack((b4,b2))
v2 = numpy.vstack((b3,b1))
arrayfinal = numpy.array(numpy.hstack((v1,v2)), dtype=numpy.cdouble, copy=True, order='C')
return arrayfinal
else:
b1 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[0], 2, axis=2 )[0]
b2 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[0], 2, axis=2 )[1]
b3 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[1], 2, axis=2 )[0]
b4 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[0], 2, axis=1 )[1], 2, axis=2 )[1]
b5 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[0], 2, axis=2 )[0]
b6 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[0], 2, axis=2 )[1]
b7 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[1], 2, axis=2 )[0]
b8 = numpy.array_split( numpy.array_split( numpy.array_split( array, 2, axis=0 )[1], 2, axis=1 )[1], 2, axis=2 )[1]
v1 = numpy.vstack((b8,b4))
v2 = numpy.vstack((b7,b3))
v3 = numpy.vstack((b6,b2))
v4 = numpy.vstack((b5,b1))
h1 = numpy.hstack((v1,v3))
h2 = numpy.hstack((v2,v4))
arrayfinal = numpy.array(numpy.dstack((h1,h2)), dtype=numpy.cdouble, copy=True, order='C')
return arrayfinal
def NewArray(self,x,y,z):
try:
array = numpy.zeros((x,y,z), dtype=numpy.cdouble, order='C')
except MemoryError:
self.ancestor.GetPage(0).queue_info.put("Could not create array. Insufficient memory.")
raise MemoryError
else:
return array
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def test_complex_scalar_warning(self):
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = tp(1+2j)
assert_warns(np.ComplexWarning, float, x)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
assert_equal(float(x), float(x.real))
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def test_complex_scalar_complex_cast(self):
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = tp(1+2j)
assert_equal(complex(x), 1+2j)
test_regression.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 40
收藏 0
点赞 0
评论 0
def test_complex_boolean_cast(self):
# Ticket #2218
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = np.array([0, 0+0.5j, 0.5+0j], dtype=tp)
assert_equal(x.astype(bool), np.array([0, 1, 1], dtype=bool))
assert_(np.any(x))
assert_(np.all(x[1:]))
test_umath.py 文件源码
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda
作者: SignalMedia
项目源码
文件源码
阅读 18
收藏 0
点赞 0
评论 0
def test_precisions_consistent(self):
z = 1 + 1j
for f in self.funcs:
fcf = f(np.csingle(z))
fcd = f(np.cdouble(z))
fcl = f(np.clongdouble(z))
assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s' % f)
assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s' % f)